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Preface

Preface

In this volume I present some examples of applications of Gauß’s and Stokes’s theorems and related
topics, cf. also Calculus 2b, Functions of Several Variables. Since my aim also has been to demonstrate
some solution strategy I have as far as possible structured the examples according to the following
form

A Awareness, i.e. a short description of what is the problem.

D Decision, i.e. a reflection over what should be done with the problem.

I Implementation, i.e. where all the calculations are made.

C Control, i.e. a test of the result.

This is an ideal form of a general procedure of solution. It can be used in any situation and it is not
linked to Mathematics alone. I learned it many years ago in the Theory of Telecommunication in a
situation which did not contain Mathematics at all. The student is recommended to use it also in
other disciplines.

One is used to from high school immediately to proceed to I. Implementation. However, examples
and problems at university level are often so complicated that it in general will be a good investment
also to spend some time on the first two points above in order to be absolutely certain of what to do
in a particular case. Note that the first three points, ADI, can always be performed.

This is unfortunately not the case with C Control, because it from now on may be difficult, if possible,
to check one’s solution. It is only an extra securing whenever it is possible, but we cannot include it
always in our solution form above.

I shall on purpose not use the logical signs. These should in general be avoided in Calculus as a
shorthand, because they are often (too often, I would say) misused. Instead of ∧ I shall either write
“and”, or a comma, and instead of ∨ I shall write “or”. The arrows ⇒ and ⇔ are in particular
misunderstood by the students, so they should be totally avoided. Instead, write in a plain language
what you mean or want to do.

It is my hope that these examples, of which many are treated in more ways to show that the solutions
procedures are not unique, may be of some inspiration for the students who have just started their
studies at the universities.

Finally, even if I have tried to write as careful as possible, I doubt that all errors have been removed.
I hope that the reader will forgive me the unavoidable errors.

Leif Mejlbro
15th October 2007
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1 Gradient fields and integrals

Example 1.1 Check in each of the following cases if the given vector field

V : R
3 → R

3

is a gradient field. Whenever this is the case one shall also find all the integrals of the gradient field.

1) V(x, y, z) = (2xz exp(x2 + y2), 2yz exp(x2 + y2), exp(x2 + y2)).

2) V(x, y, z) = (x + z,−y − z, x − y).

3) V(x, y, z) = (2xy3, x2z3, 3x2yz2).

4) V(x, y, z) = (z3 + y2 cos x, 2y sin x − 4, 3xz2 + 2).

5) V(x, y, z) = (3y4z2, 4x3z2,−3x2y2).

6) V(x, y, z) = (4xy − 3x2z2 + 1, 2x2 + 2,−2x3z − 3z2).

7) V(x, y, z) = (2x2 + 8xy2, 3x3y − 3xy,−4y2z2 − 2x3z).

8) V(x, y, z) = (y cosh(xy), z + x cosh(xy), y).

9) V(x, y, z) = (ey, ex, x + y + z).

10) V(x, y, z) =
1

1 + x2y2 + 2xyz2 + z4
(y, x, 2z).

A Gradient fields.

D Check directly by some manipulation of the rules of calculation if V · dx is a total differential.

Alternatively one integrates along a broken line K from (0, 0, 0), and then check by taking the
gradient of the result and compare with V.

I 1) We get by some manipulation

V · dx = 2xz exp(x2+y2)dx+2yz exp(x2+y2)dy+exp(x2+y2)dz

= z exp(x2+y2){2x dx+2y dy}+exp(x2+y2)dz

= z exp(x2 + y2)d(x2 + y2) + exp(x2 + y2)dz

= z d(exp(x2 + y2)) + 1 · exp(x2 + y2)dz

= d(z exp(x2 + y2)),

which shows that V is a gradient field and that all its integrals are given by

Φ(x, y, z) = z exp(x2 + y2) + k, k ∈ R.

Alternatively, let K be the broken line

(0, 0, 0) −→ (x, 0, 0) −→ (x, y, 0) −→ (x, y, z).

By a tangential line integral along this curve we get using that z = 0 along the first two
segments,

Φ(x, y, z) =
∫ x

0

0 dt +
∫ y

0

0 dt +
∫ z

0

exp(x2 + y2)dz = z exp(x2 + y2)

 Gradient fi elds and integrals
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and the gradient is

�Φ = (2xz exp(x2+y2), 2yz exp(x2+y2), exp(x2+y2)) = V(x, y, z),

showing that V is a gradient field and that all integrals are given by

Φ(x, y, z) = z exp(x2 + y2) + k, k ∈ R.

2) By a small manipulation,

V · dx = (x + z)dx − (y + z)dy + (x − y)dz

= d

(
1
2

x2

)
− d

(
1
2

y2

)
+ (z dx + x dz) − (z dy + y dz)

= d

(
1
2

x2 − 1
2

y2 + xz − yz

)
,

proving that V is a gradient field with the integrals

Φ(x, y, z) =
1
2

x2 − 1
2

y2 + z(x − y) + k

=
1
2
(x − y)(x + y + 2z) + k, for k ∈ R.

 Gradient fi elds and integrals
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Alternatively, we get by a line integration along the usual broken line from (0, 0, 0),

Φ(x, y, z) =
∫
K

V · dx =
∫ x

0

t dt −
∫ y

0

t dt +
∫ z

0

(x − y)dt

=
1
2

x2 − 1
2

y2 + z(x − y),

with the gradient

�Φ = (x + z,−y − z, x − y) = V(x, y, z).

This proves that V is a gradient field, and the integrals are

Φ(x, y, z) =
1
2

x2 − 1
2

y2 + z(x − y) + k, k ∈ R.

3) Since e.g.

∂V1

∂y
= 6xy2 	= ∂V2

∂x
= 2xz3,

the necessary condition for a gradient field is not fulfilled, so V is not a gradient field.

Alternatively, let us see what happens if we instead use the method of integrating along
the usual broken line from (0, 0, 0):

Φ(x, y, z) =
∫ x

0

0 dt +
∫ y

0

0 dt + 3x2y

∫ z

0

t2dt = x2yz3.

The gradient of this result is

�Φ = (2xyz3, x2z3, 3x2yz2) 	= V(x, y, z),

because the two fields do not agree in their first coordinate. Hence, the vector field V is not a
gradient field.

4) By a small manipulation,

V · dx = (z3+y2 cos x)dx+(2y sin x−4)dy+(3xz2+2)dz

= (z3dx + x · 3z2dz) + (y2 cos x dx + sinx · 2y dy) − 4 dy + 2 dz

= d
(
xz2 + y2 sin x − 4y + 2z

)
,

proving that V is a gradient field with the integrals

Φ(x, y, z) = xz3 + y2 sinx − 4y + 2z + k, k ∈ R.

Alternatively, we get by integrating along the usual broken line from (0, 0, 0),

Φ(x, y, z) =
∫ x

0

0 dt +
∫ y

0

(2t sin x − 4)dt +
∫ z

0

(3xt2 + 2)dt

= y2 sinx − 4y + xz3 + 2z.

The gradient of this result is

�Φ = (y2 cos x + z3, 2y sinx − 4, 3xz2 + 2) = V(x, y, z),

so the vector field is a gradient field, and its integrals are

Φ(x, y, z) = xz3 + y2 sinx − 4y + 2z + k, k ∈ R.

 Gradient fi elds and integrals
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5) Since e.g.

∂V1

∂y
= 12y3z2 og

∂V2

∂x
= 12x2z2,

we have

∂V1

∂y
	= ∂V2

∂x
,

and the necessary condition for an integral is not satisfied. This proves that the vector field is
not a gradient field.

Alternatively we get by integrating along the usual broken line from (0, 0, 0),

Φ(x, y, z) =
∫ x

0

0 dt +
∫ y

0

0 dt − 3x2y2

∫ z

0

dt = −3x2y2z.

The gradient of this result is

�Φ =
(−6xy2z,−6x2yz,−3x2y2

) 	= V(x, y, z).

It follows that the vector field is not a gradient field.

6) By a small manipulation,

V · dx = (4xy − 3x2z2 + 1)dx + (2x2 + 2)dy + (−2x3z − 3z2)dz

= (4xy dx + 2x2dy) − (3x2z2 dx + 2x3z dz)d(x + 2y − z3)
= 2{y d(x2) + x2dy} − {z2d(x3) + x3d(z2)} + d(x + 2y − z3)
= d(x + 2y − z3 + 2x2y − x3z2),

so the vector field is a gradient field with the integrals

Φ(x, y, z) = x + 2y − z3 + 2x2y − x3z2 + k, k ∈ R.

Alternatively we integrate along the usual broken line K from (0, 0, 0),

Φ(x, y, z) =
∫ x

0

dt +
∫ y

0

(2x2 + 2)dt −
∫ z

0

(2x3t + 3t2)dt

= x + 2x2y + 2y − x3z2 − z3.

The gradient of this result is

�Φ = (1 + 4xy − 3x2z2, 2x2 + 2,−2x3z − 3z2) = V(x, y, z),

so the vector field V is a gradient field with the integrals

Φ(x, y, z) = x + 2y − z3 + 2x2y − x3z2 + k, k ∈ R.

7) It follows from

∂V1

∂y
= 16xy 	= ∂V2

∂x
= 9x2y − 3y,

that the necessary condition is not fulfilled, so the vector field is not a gradient field.

 Gradient fi elds and integrals
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Alternatively we integrate along the broken line K,

Φ(x, y, z) =
∫ x

0

(2t2+0)dt+
∫ y

0

(3x3t−3xt)dt+
∫ z

0

(−4y2t2−2x3t)dt

=
2
3

x3 +
3
2

x3y2 − 3
2

xy2 − 4
3

y2z3 − x3z2.

The gradient of this expression is

�Φ =
(

2x2+
9
2
x2y2− 3

2
y2−3x2z2, 3x3y−3xy− 8

3
yz3,−4y2z2−2x3z

)
	= V(x, y, z).

We see that the necessary condition is not satisfies, so V is not a gradient field.
8) By a small manipulation,

V · dx = y cosh(xy)dx + (z + x cosh(xy))dy + y dz

= cosh(xy){y dx + x dy} + {z dy + y dz}
= cosh(xy) d(xy) + d(yz)
= d{sinh(xy) + yz},

which shows that V is a gradient field with the integrals given by

Φ(x, y, z) = sinh(xy) + yz + k, k ∈ R.

Alternatively we integrate along the usual broken line K,

Φ(x, y, z) =
∫ x

0

0 dt +
∫ y

0

x cosh(xt)dt +
∫ z

0

y dt = sinh(xy) + yz.

The gradient of this expression is

�Φ = (y cosh(x, y), z + x cosh(xy), y) = V(x, y, z).

This shows that V is a gradient field and that all the integrals are given by

Φ(x, y, z) = sinh(x, y) + yz + k, k ∈ R.

9) It follows from

∂V1

∂y
= ey 	= ∂V2

∂x
= ex,

that the necessary condition is not fulfilled, so V is not a gradient field.

Alternatively an integration along K gives

Φ(x, y, z) =
∫ x

0

e0dt +
∫ y

0

exdt +
∫ z

0

(x + y + t)dt

= x + y ex + (x + y)z +
1
2

z2.

The gradient of this expression is

�Φ = (1 + y ex + z, ex + z, x + y + z) 	= V(x, y, z).

As the necessary condition is not fulfilled, V is not a gradient field.

 Gradient fi elds and integrals
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10) We get by a small manipulation,

V · dx =
1

1 + x2y2 + 2xyz2 + z4
(y dx + x dy + 2z dz)

=
1

1 + (xy)2 + 2 · xy · z2 + (z2)2
d(xy + z2)

=
1

1 + (xy + z2)2
d(zy + z2) = dArctan(xy + z2).

This shows that V is a gradient field with the integrals

Φ(x, y, z) = Arctan(xy + z2) + k, k ∈ R.

 Gradient fi elds and integrals
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Alternatively the integration along K gives

Φ(x, y, z) =
∫ x

0

0 dt +
∫ y

0

x

1 + x2t2
dt +

∫ z

0

2t
1 + x2y2 + 2xyt2 + t4

dt

= Arctan(xy) +
∫ z

t=0

1
1 + (xy + t2)2

d(t2)

= Arctan(xy) +
[
Arctan(xy + t2)

]z
t=0

= Arctan(xy) + Arctan(xy + z2) − Arctan(xy)
= Arctan(xy + z2).

It follows from

�Φ =
1

1 + (xy + z2)2
(y, x, 2z) =

1
1 + x2y2 + 2xyz2 + z4

(y, x, 2z) = V(x, y, z),

that V is a gradient field with the integrals given by

Φ(x, y, z) = Arctan(xy + z2) + k, k ∈ R.

Example 1.2 Consider the vector field

V(x, y) =
(

2x + y

x2 + xy + y2
+ yexy,

x + 2y
x2 + xy + y2

+ xexy

)
, (x, y) 	= (0, 0).

Prove that V is a gradient field in the set given by y > −|x| and find all its integrals
Then prove that V is a gradient field in its full domain.
Finally find the tangential line integral of V along the broken line from (2, 0) via the points (2, 2) and
(−2, 2) to (−2, 0).

A Gradient field.

D Either guess an integral, or integrate along a broken line from (0, 2). Check the result. Finally, use
this integral to find the tangential line integral of V along this broken line.

I For (x, y) 	= (0, 0) it follows by a small manipulation,

V · dx =
(

2x + y

x2 + xy + y2
+ y exy

)
dx +

(
x + 2y

x2 + xy + y2
+ x exy

)
dy

=
1

x2 + xy + y2
{(2x + y)dx + (x + 2y)dy} + exy{y dx + x dy}

=
1

x2 + xy2
d(x2 + xy2) + exyd(xy)

= d
(
exy + ln

(
x2 + xy2

))
.

Hence, V is a gradient field in its full domain, and its integrals are given by

Φ(x, y) = exy + ln
(
x2 + xy + y2

)
+ k, k ∈ R.

Alternatively we get by integrating along the broken line

(0, 2) −→ (x, 2) −→ (x, y),

 Gradient fi elds and integrals
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Figure 1: The path of integration in the domain given by y > −|x|.

assuming that (x, y) does not lie on the negative Y -axis (actually a larger domain than the given).

Φ(x, y) =
∫ x

0

{
2t + 2

t2 + 2t + 4
+ 2e2t

}
dt +

∫ y

2

{
2t + x

x2 + xt + t2
+ x et

}
dt

= [ln(t2 + 2t + 4)]x0 + [e2t]x0 + [ln(x2 + xt + t2)]y2 + [ext]y2

= ln(x2+2x+ 4)−ln 4+e2x−1+ln(x2+xy+ y2)−ln(x2+2x+4)+exy−e2x

= exy + ln(x2 + xy + y2) − 1 − 2 ln 2.

It follows from

(1) �Φ =
(

2x + y

x2 + xy + y2
+ y exy,

x + 2y
x2 + xy + y2

+ x exy

)
= V(x, y),

that V is a gradient field. Now, the expression of Φ is defined for (x, y) 	= (0, 0), and (1) holds in
this domain, thus we conclude that V is a gradient field for (x, y) 	= (0, 0).

The integrals are then given by

Φ(x, y) = exy + ln(x2 + xy + y2) + k, k ∈ R.

Let K be the broken line

(2, 0) −→ (2, 2) −→ (−2, 2) −→ (−2, 0).

Then∫
K

V · dx = Φ(−2, 0) − Φ(2, 0) = e−2·0 + ln(4 + 0) − 22·0 − ln(4 + 0) = 0.

Alternatively and more difficult a parametric description of K is given by

r(t) =

⎧⎨
⎩

(2, 2t), t ∈ [0, 1],
(6 − 4t, 2), t ∈ [1, 2],
(−2, 6 − 2t), t ∈ [2, 3],

 Gradient fi elds and integrals
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Figure 2: The path of integration from (2, 0) to (−2, 0).

where

r′(t) =

⎧⎨
⎩

(0, 2), t ∈ ]0, 1[,
(−4, 0), t ∈ ]1, 2[,
(0,−2), t ∈ ]2, 3[,

so ∫
K

V · dx =
∫ 1

0

{
2 + 4t

4 + 4t + 4t2
+ 2 e4t

}
2 dt

+
∫ 2

1

{
2(6 − 4t) + 2

(6 − 4t)2 + 2(6 − 4t) + 4
+ 2 e2(6−4t)

}
(−4)dt

+
∫ 3

2

{ −2 + 2(6 − 2t)
4 − 2(6 − 2t) + (6 − 2t)2

− 2 e−2(6−2t)

}
(−2)dt

=
[
ln(4 + 4t + 4t2)

]1
0

+
[
e4t

]1
0

+[ln((6 − 4t)2 + 2(6 − 4t) + 4)]21 +
[
e2(6−4t)

]
1

+ 2

+
[
ln(4 − 2(6 − 2t) + (6 − 2t)2)

]3
2

+
[
e−2(6−2t)

]3
2

= ln(12) − ln 4 + e4 − 1
+ ln(4 − 4 + 4) − ln(4 + 4 + 4) + e−4 − e4

+ ln 4 − ln(4 − 4 + 4) + 1 − e−4

= {ln 12 − ln 4 + e4 − 1} + {ln 4 − ln 12 + e−4 − e−4} + {ln 4 − ln 4 + 1 − e−4}
= 0.

Remark. The computations would have been easier if we instead had considered the parametric
description

r(t) =

⎧⎨
⎩

(2, t), t ∈ [0, 2],
(−t, 2), t ∈ [−2, 2],
(−2, 2 − t), t ∈ [0, 2].

♦

 Gradient fi elds and integrals
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Example 1.3 Prove that the vector field

V(x, y, z) =
(

2xz2 − y

x2 + y2
,

2yz2 + x

x2 + y2
, 2z ln(x2 + y2)

)
, (x, y) 	= (0, 0),

is a gradient field in the set A = {(x, y, z) | x > 0}, and find the integral F : A → R, for which
F (1, 0, 0) = 0. Then compute the tangential line integral of V along the curve K given by

(x, y, z) =
(

1, t2,
t√
2

)
, t ∈ [0, 1].

Finally, show that V is not a gradient field in its full domain. (Compute the circulation along some
circle in a plane perpendicular to the Z-axis).

 Gradient fi elds and integrals
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A Gradient field.

D The integral is found by one of the following three methods:

First method. Rules of calculations for differentials.

Second method. Indefinite integration.

Third method. Integration along a curve (e.g. a broken line) followed by the mandatory check.

The tangential line integral is found by:

First method. Use the definition of the integral.

Second method. Insert the parametric description and just compute-

Finally, compute the circulation along the unit circle. If the value is different from 0, the vector
field V cannot be a gradient field in the whole of its domain.

Remark. The latter result illustrates the importance of the domain being simply connected. ♦

I The integral.

First method. Rules of calculations for differentials. If x > 0, then

V · dx =
2xz2 − y

x2 + y2
dx +

2yz2 + x

x2 + y2
dy + 2z ln(x2 + y2)dz

=
{

z2

x2 + y2
(2x dx + 2y dy) + ln(x2 + y2)d(z2)

}
+

1
x2 + y2

(−y dx + x dy)

=
{

z2 d(x2 + y2)
x2 + y2

+ ln(x2 + y2)d(z2)
}

+
1

1 +
(y

x

)2 · −y dx + x dy

x2

=
{
z2d ln(x2 + y2) + ln(x2 + y2)d(z2)

}
+

1

1 +
(y

x

)2 d
(y

x

)

= d
{

z2 ln(x2 + y2) + Arctan
(y

x

)}
.

This shows that

V · dx = dF = �F · dx,

hence V is a gradient field with the integrals given by

Fk(x, y, z) = z2 ln(x2 + y2) + Arctan
(y

x

)
+ k, k ∈ R, (x, y, z) ∈ A.

It follows from the condition F (1, 0, 0) = 0 + 0 + k = 0 that k = 0, thus

F (x, y, z) = F0(x, y, z) = z2 ln(x2 + y2) + Arctan
(y

x

)
, x > 0.

Second method. Successive indefinite integration. Let again x > 0 and put

ω = V · dx
=

2xz2 − y

x2 + y2
dx +

2yz2 + x

x2 + y2
dy + 2z ln(x2 + y2)dz.

 Gradient fi elds and integrals
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An inspection shows that the latter term will give less trouble by indefinite integration, so we
put

F1(x, y, z) =
∫

2z ln(x2 + y2)dz = z2 ln(x2 + y2).

Then

dF1 =
2xz2

x2 + y2
dx +

2yz2

x2 + y2
dy + 2z ln(x2 + y2)dz,

and

(2) ω − dF1 =
−y

x2 + y2
dx +

x

x2 + y2
dy.

We shall be more careful in the next step. If we choose the first term, we shall usually get an
Arctan-function with y in the denominator. However, y may be 0, so we get some difficulties
in finding a continuous integral. There is here a trick to circumvent this hurdle which is not
too well-known, so we shall show it here aside.

Aside. Since x > 0 we may put

Φ2(x, y) =
∫ −y

x2 + y2
dx =

∫
1

1 +
(y

x

)2

(
− y

x2

)
dx

=
∫

1

1 +
(y

x

)2 d
(y

x

)
= Arctan

(y

x

)
.

One may, however doubt, if most readers would introduce the new variable t =
y

x
for y constant.

♦

Indefinite integration of the latter term of (2). When x > 0 is considered as a
constant, we get

F2(x, y) =
∫

x

x2 + y2
dy =

∫
1

1 +
(y

x

) d
(y

x

)
= Arctan

(y

x

)
.

Then

dF2 =
1

1 +
(y

x

)2

(
− y

x2

)
dx +

1

1 +
(y

x

)2 · 1
x

dy = − y

x2 + y2
dx +

x

x2 + y2
dy = ω − dF1,

hence by a rearrangement,

ω = V · dx = dF1 + dF2 = d(F1 + F2) = d
{

z2 ln(x2 + y2) + Arctan
(y

x

)}
for x > 0.
We conclude that V is a gradient field in A with its integrals given by

F (x, y, z) = z2 ln(x2 + y2) + Arctan
(y

x

)
+ k
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for k ∈ R and (x, y, z) ∈ A.

It follows from F (1, 0, 0) = 0 + 0 + k = 0 that k = 0, thus the searched integral is

F (x, y, z) = z2 ln(x2 + y2) + Arctan
(y

x

)
, (x, y, z) ∈ A.

Third method. It follows by a tangential line integral along the curve given by the line segments

(1, 0, 0) −→ (x, 0, 0) −→ (x, y, 0) −→ (x, y, z)

that the curve lies entirely in A, and that the result (the candidate) automatically fulfils
F (1, 0, 0). Hence

F (x, y, z) =
∫ x

1

0 dt +
∫ y

0

x

x2 + t2
dt +

∫ z

0

2t ln(x2 + y2)dt

= z2 ln(x2 + y2) + Arctan
(y

x

)
.

C When this method is used, one shall always check the result:

�F =

⎛
⎜⎝ 1

1+
(y

x

)2

(
− y

x2

)
+

z2 · 2x
x2+y2

,
1

1+
(y

x

)2

1
x

+
z2 · 2y
x2+y2

, 2z ln(x2+ y2)

⎞
⎟⎠

=
(
− y

x2 + y2
+

2xz2

x2 + y2
,

x

x2 + y2
+

2yz2

x2 + y2
, 2z ln(x2 + y2)

)

=
(

2xz2 − y

x2 + y2
,
2yz2 + x

x2 + y2
, 2z ln(x2 + y2)

)
= V(x, y, z).

We see that the result is correct, so V is a gradient field in A, and the searched integral is

F (x, y, z) = z2 ln(x2 + y2) + Arctan
(y

x

)
.

I Line integral.

First method. The curve K, given by

(x, y, z) =
(

1 + t2,
t√
2

)
, t ∈ [0, 1],

lies entirely in A with initial point (1, 0, 0) and the end point
(

1, 1,
1√
2

)
, and

F (x, y, z) = z2 ln(x2 + y2) + Arctan
(y

x

)
is a integral of V in A. Hence∫

K
V · dx = F

(
1, 1,

1√
2

)
− F (1, 0, 0) = F

(
1, 1,

1√
2

)

= Arctan 1 +
1
2

ln(1 + 1) =
π

4
+

1
2

ln 2.
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Second method. We get by computing∫
K

V · dx =
∫ 1

0

{
2 · 1 · t2

2 − t2

1 + t4
· 0 +

2 · t2 · t2

2 + 1
1 + t4

· 2t + 2 · t√
2

ln(1 + t4) · 1√
2

}
dt

=
∫ 1

0

{2t + t ln(1 + t4)}dt = 1 +
1
2

∫ 1

0

ln(1 + u2)du

= 1 +
1
2
[
u ln(1 + u2)

]1
0
− 1

2

∫ 1

0

2u2

1 + u2
du = 1 +

1
2

ln 2 −
∫ 1

0

u2 + 1 − 1
u2 + 1

du

= 1 +
1
2

ln 2 − 1 + [Arctan u]10 =
π

4
+

1
2

ln 2.

Circulation. Let C be the circle in the XY -plane described parametrically by

(x, y, z) = (cos t, sin t, 0), t ∈ [0, 2π].
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Then the circulation is given by∫
C
V · dx =

∫ 2π

0

{−sin t · (−sin t)+cos t · cos t+0}dt =
∫ 2π

0

dt = 2π

which is different from 0, and V is not a gradient field in its entire domain.

We notice that C traverses points which do not lie in A.

Example 1.4 Given a vector field in the plane,

V(x, y) = (x2 + y2, xy), (x, y) ∈ R
2.

1) Find the tangential line integral of V along the circle x2 + y2 = 1 run through in the positive sense
of the plane.

2) Show that V is not a gradient field.

A Tangential line integral.

D Follow the guidelines.

I 1) Let K be the unit circle given by

(x, y) = (cos t, sin t), t ∈ [0, 2π].

Then∫
K

V · dx =
∫ 2π

0

{1 · (− sin t) + cos t · sin t · cos t}dt =
[
cos t − 1

3
cos3 t

]2π

0

= 0.

2) Since

∂V1

∂y
= 2y 	= ∂V2

∂x
= y,

the necessary condition is not satisfied, and the field is not a gradient field.

Alternatively we get by integrating along a broken line from (0, 0, 0) that

Φ(x, y, z) =
∫
K

V · dx =
∫ x

0

t2dt +
∫ y

0

xt dt =
1
3

x3 +
1
2

xy2,

where

�Φ =
(

x2 +
y

2, xy

)
	= V(x, y),

which shows that V is not a gradient field.
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Example 1.5 Given the vector field

V(x, y, z) =

⎛
⎝ exp(−(x + 2y + 3z)2)

2 exp(−(x + 2y + 3z)2)
3 exp(−(x + 2y + 3z)2)

⎞
⎠ , (x, y, z) ∈ R

3.

1) Prove that V is a gradient field.

2) Let F be an integral of V. Prove that F has neither a maximum nor a minimum.

A Gradient field.

D Prove directly that V · dx = dF . Alternatively apply the standard method.

I 1) First method. We get by inspection,
V · dx = exp(−(x + 2y + 3z)2) · (dx + 2 dy + 3 dz)

= exp(−(x + 2y + 3z)2) d(x + 2y + 3z)

= d

(∫ x+2y+3z

0

exp(−t2) dt + C

)
,

thus V is a gradient field. An integral is e.g.

F (x, y, z) =
∫ 2+2y+3z

0

exp(−t2) dt.

This cannot be expressed by the most elementary functions. We have not yet introduced
the error function.

Second method. Since R
3 is simply connected, and V is of class C∞, we shall only show

that the “mixed derivatives” agree. We get by computing

∂Vx

∂y
= −4(x + 2y + 3z) exp(−(x + 2y + 3z)2),

∂Vx

∂z
= −6(x + 2y + 3z) exp(−(x + 2y + 3z)2),

∂Vy

∂x
= −4(x + 2y + 3z) exp(−(x + 2y + 3z)2),

∂Vy

∂z
= −12(x + 2y + 3z) exp(−(x + 2y + 3z)2),

∂Vz

∂x
= −6(x + 2y + 3z) exp(−(x + 2y + 3z)2).

Hence by comparison,

∂Vx

∂y
=

∂Vy

∂x
,

∂Vx

∂z
=

∂Vz

∂x
,

∂Vy

∂z
=

∂Vz

∂y
,

which together with that R
3 is simply connected shows that V is a gradient field.

2) As F is of class C∞, the (local) maxima and minima can only be attained at stationary points.
Since

�F = V 	= 0 for all (x, y, z) ∈ R
3,

it follows that F has no stationary points and thus no maxima or minima either.
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Example 1.6 Check if the vector field

V(x, y) =
(
− x2y3

x6 + y6
,

x3y2

x6 + y6

)
, (x, y) 	= (0, 0),

is a gradient field.

A Check of a possible gradient field.

D Integrate along the unit circle and show that the value is 	= 0.

I We use the following parametric description of the unit circle

(x, y) = (cos t, sin t), t ∈ [0, 2π].

Hence,

∮
K

V · dx =
∫ 2π

0

1
cos6+sin6 t

(−cos2 t sin3 t, cos3 t sin2 t
) · (−sin t, cos t) dt

=
∫ 2π

0

1
cos6 t+sin6 t

(
cos2 t sin4 t+cos4 t sin2 t

)
dt

=
∫ 2π

0

cos2 t · sin2 t

cos6 t + sin6 t
dt > 0.

Since
∮

K
V ·dx 	= 0 along a closed curve K, the vector field is not a gradient field in R

2 \ {(0, 0)}.

Remark. The underhand dealing is that it can be proved that V(x, y) is a gradient field in every
simply connected subdomain of R

2 \ {(0, 0)}. We shall show this in the special case where x > 0.
We get by some manipulation using that x > 0,

ω = V · dx = − x2y3

x6 + y6
dx +

x3y2

x6 + y6
dy = − 1

x4
· y3

1 +
(y

x

)6 dx +
1
x3

· 1

1 +
(y

x

)6 y2 dy

=
1
3
· 1

1 +
(y

x

)6

{
y3 d

(
1
x3

)
+

1
x3

d
(
y3
)}

=
1
3
· 1

1 +
{(y

x

)3
}2 d

({y

x

}3
)

=
1
3

dArctan
({y

x

}3
)

,

proving that the vector field is a gradient field in the right hand half plane x > 0. It is by exploiting
this idea possible to show that the vector field is a gradient field in every simply connected subset
of R

2 \ {(0, 0)}, without being a gradient field in all of R
2 \ {(0, 0)}. ♦
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Example 1.7 Given the vector field

V(x, y) =

(
x2√

y + x2
+
√

y + x2,
x

2
√

y + x2

)
.

1) Prove that V is a gradient field in R+ × R+, and find all the integrals of V.

2) Check if V is also a gradient field in the entire domain in which V is defined.

3) Find the tangential line integral of V along the line segment from (0, 1) to (1, 0).

A Gradient field.

D Sketch the domain. Then use the standard procedure for examples of this kind.
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Figure 3: The domain and the curve from (0, 1) to (1, 0).

I The vector field is defined and of class C∞, when y > −x2, thus

D = {(x, y) | y > −x2}.

1) Let

ω = V · dx =

(
x2√

y + x2
+
√

y + x2

)
dx +

x

2
√

y + x2
dy.

Then

F (x, y) =
∫

x

2
√

y + x2
dy = x

√
y + x2

and

ω − dF = ω −
(√

y + x2 +
x2√

y + x2

)
− x

2
√

y + x2
dy = 0,

and the integrals in R+ × R+ are given by

FC(x, y) = x
√

y + x2 + C, C ∈ R.

2) Since dFC = ω in all of D, we conclude that V is a gradient field in D with the same integrals.

3) The line segment between (0, 1) and (1, 0) lies clearly in D. It follows from 2) that∫
K

V · dx = F (1, 0) − F (0, 1) =
[
x
√

y + x2 + C
](1,0)

(0,1)
= 1.
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Example 1.8 Prove that the differential form

ω = (2x + y exy) dx + (y + x exy) dy, (x, y) ∈ R
2,

is exact and find the integral F , for which F (0, 0) = 0.

A Exact differential form.

D Use either 1) manipulation, 2) indefinite integration, or 3) integration along a broken line.

I 1) Manipulation. When we collect terms which look very similar to each other, we get immedi-
ately,

ω = (2x + y exy) dx + (y + x exy) dy = (2x dx + y dy) + exy(y dx + x dy)

= d

(
x2 +

1
2

y2

)
+ exy d(xy) = d

(
x2 +

1
2

y2 + exy

)
,

and the differential form is exact with the integrals

F (x, y) = x2 +
1
2

y2 + exy + C, C ∈ R.

From F (0, 0) = 0 follows that C = −1, and the searched solution becomes

F (x, y) = x2 +
1
2

y2 + exy − 1.

2) Indefinite integration. We get for fixed y,

F1(x, y) =
∫

(2x + y exy) dx = x2 + exy

where

ω − dF1 = (2x + y exy) dx + (y + x exy) dy − (2x + y exy) dx − x exy dy

= y dy,

hence F2(y) =
∫

y dy =
1
2

y2, and

F (x, y) = F1(x, y) + F2(y) + C = x2 +
1
2

y2 + exy + C, C ∈ R.

We conclude from F (0, 0) = 0 that C = −1, so

F (x, y) = x2 +
1
2

y2 + exy − 1.

3) Integration along a broken line from (0, 0). Here we get

F (x, y) =
∫ x

0

(2t + 0) dt +
∫ y

0

(
t + x ext

)
dt = x2 +

1
2

y2 + exy − 1.

Notice that if we apply this method we must always check the result:
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C Test. We get by insertion that F (0, 0) = 0. Furthermore, we get the differential

dF = (2x + y exy) dx + (y + x exy) dy = ω.

We see that the differential form is exact.

Example 1.9 Given the vector field

V(x, y) =
(
x2y6 − y + x, 2x3y5 − x + y

)
, (x, y) ∈ R

2.

1. Prove that V is a gradient field, and then find all integrals of V.

Let K1 denote the circle x2 + y2 = 1 run through once in the positive sense of the plane, and let K2

denote the oriented line segment from (0, 0) to (1, 1).

2. Find the tangential line integrals
∫
K1

V · dx and
∫
K2

V · dx.

A Gradient field.

D Find for the practice of the methods the integrals in as many ways as possible. In the latter
question we only use the integration theorem, in which only the initial point and the end point of
the curve enter.

I 1) First variant. By some simple manipulations using the rules of calculations of a differential we
get

ω = V · dx = (x2y6 − y + x)dx + (2x3y5 − x + y)dy

=
{

1
3

y6 d
(
x3
)

+
1
3

x3 d
(
y6
)}− (y dx+x dy) +

1
2

d(x2 + y2)

= d

{
1
2

(x2+y2)−xy+
1
3

x3y6

}
= d

{
1
2

(x − y)2+
1
3

x3y6

}
.

This shows that V is a gradient field, and the integrals are given by

F (x, y) =
1
2

(x − y)2 +
1
3

x3y6 + C, C ∈ R.

Second variant. We get by an integration along a broken line from (0, 0)

F (x, y) =
∫ x

0

t dt +
∫ y

0

(
2x3t5 − x + t

)
dt =

1
2

x2 +
1
3

x3y6 − xy +
1
2

y2

=
1
2

(x − y)2 +
1
3

x3y6.

C We shall always check the result by this method. However,

dF =
(
x2y6 + x − y

)
dx +

(
2x3y5 − x + y

)
dy = V · dx,

and it follows that V is a gradient field for which the integrals are given by

F (x, y) =
1
3

x3y6 +
1
2

(x − y)2 + C, C ∈ R.
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Third variant. Indefinite integration. Let y be arbitrary. Then

F1(x, y) =
∫ (

x2y6 − y + x
)

dx =
1
3

x3y6 − xy +
1
2

x2,

hence

dF1 =
(
x2y6 − y + x

)
dx +

(
2x3y5 − x

)
dy,

and thus

ω − dF1 = y dy = d

(
1
2

y2

)
.

It follows that

ω = dF = d

(
F1 +

1
2

y2

)
= d

{
1
3

x3y6 − xy +
1
2

x2 +
1
2

y2

}
,

and V is a gradient field with the integrals

F (x, y) =
1
3

x3y6 +
1
2

(x − y)2 + C, C ∈ R.
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2) Since V is a gradient field and K1 is a closed curve, we get∫
K1

V · dx = 0.

The latter line integral depends also only on the initial and the end point of the curve, so∫
K2

V · dx = F (1, 1) − F (0, 0) =
1
3
.

Example 1.10 Let a denote a positive constant. Given the vector field

V(x, y) =
(

1 + x2y2

x
,

2 + a x2y2

3y

)
, (x, y) ∈ R+ × R+.

1) Prove that V is a gradient field, if and only if a = 3.

2) Find for a = 3 all integrals of V.

A Gradient field, integral.

D Check ω = V · dx.

I 1) As x > 0 and y > 0, it follows by reduction,

ω = V · dx =
1 + x2y2

x
dx +

2 + a x2y2

3y
dy =

1
x

dx +
2
3

1
y

dy + xy2 dx +
a

3
x2y dy

= d ln x +
2
3

d ln y +
1
2
{
y2d

(
x2
)

+ x2d
(
y2
)}

+
(a

3
− 1

)
x2y dy

= d

{
lnx +

2
3

ln y +
1
2

x2y2

}
+

1
3

(a − 3)x2y dy.

Clearly, this differential form is exact if and only if a = 3.

2) When a = 3, it follows directly from the above that the integrals are given by

F (x, y) = lnx +
2
3

ln y +
1
2

x2y2 + C,

where C ∈ R and (x, y) ∈ R+ × R+.

Example 1.11 Sketch the domain of the vector field

V(x, y) =
(

y√
1 − xy

, 1 +
x√

1 − xy

)
.

Then prove that V is a gradient field and find all integrals of V.

A Gradient field.

D Sketch the domain; check ω = V · dx.
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Figure 4: The domain D is the open region lying between the two branches of the hyperbola.

I The vector field is defined if and only if xy < 1, so D is the open region between the two branches
of the hyperbola on the figure.

Then we get by a small rearrangement,

ω = V · dx =
y√

1 − xy
dx +

(
1 +

x√
1 − xy

)
dy

= dy +
1√

1 − xy
(y dx + x dy) = dy +

1√
1 − xy

d(xy)

= dy + d(−2
√

1 − xy) = d{y − 2
√

1 − xy}.

Since we can put everything under the d-sign, V is a gradient field and all integrals in D are given
by

F (x, y) = y − 2
√

1 − xy + C, C ∈ R.

Example 1.12 Given the gradient field

V(x, y) =
( −y

(x + 1)2 + y2
,

x + 1
(x + 1)2 + y2

)
, y > 0.

Find all the integrals of V.

A Gradient field, integral.

D Check ω = V · dx.
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I Assuming that y > 0 we get by a small manipulation,

ω = V · dx =
1

(x + 1)2 + y2
(−y dx + (x + 1) dy)

= − 1

1 +
(

x + 1
y

)2

{
1
y

d(x + 1) + (x + 1) d

(
1
y

)}

= − 1

1 +
(

x + 1
y

)2 d

(
x + 1

y

)
= dArccot

(
x + 1

y

)
.

Hence, the integrals are

F (x, y) = Arccot
(

x + 1
y

)
+ C, C ∈ R, y > 0.

Example 1.13 Given the vector field

V(x, y) =
(
− 2xy2

x4 + y4
,

2yx2

x4 + y4

)
, (x, y) ∈ R

2 \ {(0, 0)}.

1. Prove that

F (x, y) = Arctan
(

y2

x2

)

is an integral of V in each of the sets

A1 = {(x, y) ∈ R
2 | x > 0} and A2 = {(x, y) ∈ R

2 | x < 0}.

2. Find all the integrals of V in each of the sets

B1 = {(x, y) ∈ R
2 | y > 0} and B2 = {(x, y) ∈ R

2 | y < 0}.

Let K1 be the line segment from (−1, 1) to (1, 1), and let K2 be the line segment from (1, 1) to (−1, 1).

3. Compute the tangential line integrals∫
K1

V · t ds and
∫
K2

V · t ds.

Let K be the boundary curve of the square of vertices (1,−1), (1, 1), (−1, 1) and (−1,−1), where K is
oriented in the positive sense of the plane.

4. Find the tangential line integral∫
K

V · t ds.
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A Tangential line integrals. The vector field has an integral in each simply connected domain which
does not contain (0, 0). In general one shall take care.

D Follow the guidelines.

I 1) We shall only prove that �F = V in A1 and in A2. This follows from

�F =

⎛
⎜⎝ −2

y2

x3

1 +
y4

x4

,
2

y

x2

1 +
y4

x4

⎞
⎟⎠ =

(
− 2xy2

x4 + y4
,

2yx2

x4 + y4

)
= V(x, y).

2) Clearly, Arctan
(

y2

x2

)
cannot be applied, but if we guess “of symmetric reasons” on

F1(x, y) = − Arctan
(

x2

y2

)
,

 Gradient fi elds and integrals
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then we get in B1, or in B2, respectively, that

�F =

⎛
⎜⎜⎝−

2
x

y2

1 +
x4

y4

, −
−2

x2

y3

1 +
x4

y4

⎞
⎟⎟⎠ =

(
− 2xy2

x4 + y4
,

2yx2

x4 + y4

)
= V(x, y),

and the integrals of V(x, y) in B1, or in B2, are

F1(x, y) = − Arctan
(

x2

y2

)
+ C, C ∈ R.

–1

–0.5

0

0.5

1

y

–1 –0.5 0.5 1

x

Figure 5: The curve composed of K1 from (1,−1) to (1, 1), and K2 from (1, 1) to (−1, 1).

3) The line segment K1 lies entirely in A1, and the line segment K2 lies entirely in B1. Hence we
can use the integrals found in A1 and in B1, respectively. Thus∫

K1

V · t ds = [F (x, y)](1,1)
(1,−1) = Arctan 1 − Arctan 1 = 0,

and∫
K2

V · t ds = [F (x, y)](−1,1)
(1,1) = − Arctan 1 + Arctan 1 = 0.

4) Let K3 be the line segment from (−1, 1) to (−1,−1). Then K3 lies entirely in A2, and we get
similarly that∫

K3

V · t ds = [F (x, y)](−1,−1)
(−1,1) = 0.

If K4 is the line segment from (−1,−1) to (1,−1), then K4 lies entirely in B2, so∫
K4

V · t ds = [F1(x, y)](1,−1)
(−1,−1) = 0.

Finally, it follows from the results of 3) and 4) that∫
K

V · t ds =
4∑

j=1

∫
Kj

V · t ds = 0.
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Figure 6: The curve K of 4).

Remark. It is now no longer difficult to show that V has an integral in the set R
2 \ {(0, 0)}.

This shall only be sketched in the following. The idea is to prove that the tangential line
integral along any closed (piecewise C1) curve is 0. If the curve lies in one of the four sets A1,
A2, B1, B2, this has already been proved. If the closed curve lies in the union of some of these
sets without encircling (0, 0), just add some curve segments, run through once in each direction,
such that each of the closed curves lies in one of the sets A1, A2, B1, B2, and the previous
result can be applied. Finally, if the closed curve encircles (0, 0), we first add the curve −K,
i.e. the curve of 4) run through in the opposite direction. Then add some curve segments, also
run through once in each direction (contributing with zero to the final line integral) such that
each of the new closed curves lies in one of the four sets, in which we have found an integral.
The sum of all these closed line integrals is 0, and since we only have added 0 to obtain this
result, the original closed line integral must also be 0. And the claim is proved. ♦

Example 1.14 1) Sketch the domain A of

V(x, y) =

(
x√

12−3x2−3y2
,

y√
12−3x2−3y2

+
1√
y

)
.

2) Prove that the vector field V : A → R
2 is a gradient field and find all its integrals.

A Domain; gradient field.

D Check where the denominators are defined and 	= 0. Then use one of the standard methods of
investigation of gradient fields.

I 1) The domain is given by

12 − 3x2 − 3y2 > 0 and y > 0,

which we rewrite as

x2 + y2 < 4 = 22 and y > 0.

The domain A is the open half disc of centrum (0, 0) and radius 2 and y > 0.
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0
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Figure 7: The domain A is an open half disc.

2) First variant. Manipulation. By some small rearrangements,

V · dx =
xdx + ydy√
12−3x2−3y2

+
dy√

y
= −1

6
d(12−3x2−3y2)√

12−3x2−3y2
+ 2d(

√
y)

= −1
3

d
(√

12 − 3x2 − 3y2
)

+ 2d(
√

y)

= d

(
2
√

y − 1
3

√
12 − 3x2 − 3y2

)
.

We conclude that V is a gradient field and all its integrals are given by

F (x, y) = 2
√

y − 1
3

√
12 − 3x2 − 3y2 + C, (x, y) ∈ A,

where C is an arbitrary constant.
Second variant. Indefinite integration. When the second coordinate is integrated we get the

candidate

F1(x, y) =
∫ (

y√
12 − 3x2 − 3y2

+
1√
y

)
dy = 2

√
y − 1

3

√
12 − 3x2 − 3y2.

Since

∂F1

∂x
= −1

3
· 1
2
· −6x√

12 − 3x2 − 3y2
=

x√
12 − 3x2 − 3y2

= V1,

it follows that F1 is an integral and V is a gradient field.

The integrals are now given by

F (x, y) = 2
√

y − 1
3

√
12 − 3x2 − 3y2 + C, (x, y) ∈ A,

where C is an arbitrary constant.
Third variant. Integration along a broken line. In order to stay inside the set A we integrate

along the broken line

(0, 1) −→ (0, y) −→ (x, y).
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In this way we obtain the candidate for (x, y) ∈ A

F2(x, y) =
∫ y

1

(
t√

12−3t2
− 1√

t

)
dt +

∫ x

0

t√
12 − 3t2 − 3y2

dt

= 2
√

y − 2 − 1
3

√
12 − 3y2 + 1 − 1

3

√
12 − 3x2 − 3y2 +

1
3

√
12 − 3y2

= 2
√

y − 1
3

√
12 − 3x2 − 3y2 − 1.
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We shall always check our result in this variant, because the formula will give a result no
matter if the differential form is exact or not. But

∂F2

∂x
= −1

3
· 1
2
· 1√

12 − 3x2 − 3y2
· (−6x) =

x√
12 − 3x2 − 3y2

= Vx(x, y),

and
∂F2

∂y
=

1√
y
− 1

3
· 1
2
· 1√

12 − 3x2 − 3y2
· (−6y)

=
y√

12 − 3x2 − 3y2
+

1√
y

= Vy(x, y),

thus

�F2(x, y) = V(x, y).

Hence we have proved that the candidate is indeed an integral. Finally, we conclude that
all integrals are given by

F (x, y) = 2
√

y − 1
3

√
12 − 3x2 − 3y2 + C, (x, y) ∈ A,

where C is an arbitrary constant.
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2 The flux of a vector field

Example 2.1 Find in each of the following cases the flux of the given vector field through the described
oriented surface F .

1) The flux of V(x, y, z) = (z, x,−3y2z) through the surface F given by x2 +y2 = 16 for x ≥ 0, y ≥ 0
and z ∈ [0, 5], where the normal vector n is pointing away from the Z-axis.

2) The flux of V(x, y, z) = (cos x, 0, cos x+cos y) through the surface F given by (x, y) ∈ [0, π]×
[
0,

π

2

]
and z = 0, and where n = ez.

3) The flux of V(x, y, z) = (xy, z2, 2yz) through the surface F given by x2 + y2 + z2 = a2, and x ≥ 0,
y ≥ 0, z ≥ 0, and where n is pointing away from origo.

4) The flux of V(x, y, z) = (x + y, x − y, y2 + z) through the surface F given by x2 + y2 ≤ 1 and
z = xy, and where n · ez > 0.

5) The flux of

V(x, y, z) =
1

(x2 + y2 + z2)
3
2

(x, y, z),

through the surface F given by � ≤ a and z = h, and where n = ez.

[Cf. Example 4.3].

6) The flux of

V(x, y, z) =
1

(x2 + y2 + z2)
3
2

(x, y, z),

through the surface F given by � = a and z ∈ [−h, h], and where n is pointing away from the
Z-axis.

[Cf. Example 4.3].

7) The flux of V(x, y, z) = (y, x, x + y + z) through the surface F given by the parametric description

r(u, v) = (u cos v, u sin v, hv), u ∈ [0, 1], v ∈ [0, 2π].

8) The flux of V(x, y, z) = (y,−x, z2) through the surface F given by the parametric description

r(u, v) =
(√

u cos v,
√

u sin v, v
3
2

)
, 1 ≤ u ≤ 2, 0 ≤ v ≤ u.

9) The flux of V(x, y, z) = (yz,−xz, hz) through the surface F given by the parametric description

r(u, v) = (u cos v, u sin v, hv), u ∈ [0, 1], v ∈ [0, 2π].

A Flux of a vector field through a surface.

D Sketch whenever possible the surface. If the surface is only described in words, set up a parametric
description. Compute the normal vector N (possibly the normed normal vector n) and check the
orientation. Finally, find the flux.

I 1) The surface is in semi polar coordinates described by

� = a, ϕ ∈
[
0,

π

2

]
, z ∈ [0, 5],
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Figure 8: The surface F of Example 2.1.1.

and the surface is a cylinder with the parameter domain

E =
{

(ϕ, z)
∣∣∣ ϕ ∈

[
0,

π

2

]
, z ∈ [0, 5]

}
.
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Figure 9: The surface F of Example 2.1.2.

The unit normal vector is

n = (cos ϕ, sin ϕ, 0),

and the area element is

dS = ds dz = 4 δϕ dz.

Hence we get the flux∫
F

V · n dS =
∫

E

{z cos ϕ + 4 cos ϕ · sin ϕ} · 4 dϕ dz

= 4
∫ π

2

0

{∫ 5

0

(z cos ϕ + 4 sinϕ · cos ϕ)dz

}
dϕ

= 4
∫ π

2

0

{
25
2

cos ϕ + 20 sinϕ cos ϕ

}
dϕ = 4 · 25

2
+ 4 · 20 · 1

2
= 90.

2) In this case the flux is∫
F

V · n dS =
∫ π

0

{∫ π
2

0

(cos x + cos y) dy

}
dx

=
∫ π

0

{π

2
cos x + 1

}
dx = 0 + 1 · π = π.

3) The surface is a subset of the sphere of centrum (0, 0, 0) and radius a, lying in the first octant.

In rectangular coordinates we find the area element on F ,

dS =
a√

a2 − x2 − y2
dx dy

(
= “

a

z
dx dy”

)
,
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Figure 10: The surface F of Example 2.1.3 for a = 1.

and the unit normal vector is

n =
1
a

(x, y, z) =
1
a

(
x, y,

√
a2 − x2 − y2

)
, (x, y) ∈ E,

where the parameter domain is

E =
{

(x, y) | 0 ≤ x ≤ a, 0 ≤ y ≤
√

a2 − x2
}

.

Then the flux of the vector field V(x, y, z) = (xy, z2, 2yz) through F is∫
F

V · n dS =
∫
F

(xy, z2, 2yz) · 1
a

(x, y, z) dS

=
1
a

∫
F

{
x2y + yz2 + 2yz2

}
dS =

1
a

∫
F

y(x2 + 3z2) dS

=
1
a

∫
E

a

{
yx2√

a2 − x2 − y2
3y
√

a2 − x2 − y2

}
dx dy

=
∫ a

0

{∫ √
a2−x2

0

{
x2√

a2 − x2 − y2
+ 3

√
a2 − x2 − y2

}
y dy

}
dx

=
1
2

∫ a

0

{∫ a2−x2

0

(
x2

√
a2 − x2 − t2

+ 3
√

a2 − x2 − t

)
dt

}
dx

=
1
2

∫ a

0

[
−2x2

√
a2 − x2 − t2 − 3 · 2

3

(√
a2 − x2 − t

)3
]a2−x2

t=0

dx

=
∫ a

0

{
x2
√

a2 − x2 + (a2 − x2)
√

a2 − x2
}

dx

= a2

∫ a

0

√
a2 − x2 dx = a2 · π

4
· a2 =

πa4

4
.

Alternatively, the area element on F is given in polar coordinates by

dS = a2 sin θ dθ dϕ, θ ∈
[
0,

π

2

]
, ϕ ∈

[
0,

π

2

]
,
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Figure 11: The parameter domain of Example 2.1.3 for a = 1.

thus the parameter domain is

E =
{

(θ, ϕ)
∣∣∣ 0 ≤ θ ≤ π

2
, 0 ≤ ϕ ≤ π

2

}
=
[
0,

π

2

]
×
[
0,

π

2

]
.

As

(x, y, z) = a (sin θ cos ϕ, sin θ sinϕ, cos θ),

the unit normal vector is

n =
1
a

(x, y, z) = (sin θ cos ϕ, sin θ sinϕ, cos θ).

The flux of the vector field

V(x, y, z) = (xy, z2, 2yz)

through the surface F is∫
F

V · n dS =
∫
F

(xy, z2, 2yz) · 1
a

(x, y, z) dS

=
1
2

∫
F
{x2y + yz2 + 2yz2}dS =

1
a

∫
F

y(x2 + 3z2) dS

=
1
a

∫
E

a sin θ sin ϕ · a2{sin2 θ cos2 ϕ+3 cos2 θ} · a2 sin θ dθ dϕ

= a4

∫ π
@

0

{∫ π
2

0

sin2 θ
(
sin2 θ cos2 ϕ+3 cos2 θ

)
sin ϕ

}
dθ

= a4

∫ π
2

0

sin2 θ

[
−1

3
sin2 θ cos3 ϕ− 1

3
cos2 θ cos ϕ

]π
2

ϕ=0

dθ

= a4

∫ π
2

0

sin2 θ

(
1
3

sin2 θ + 3 cos 2θ

)
dθ.
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We compute the integrand by introducing the double angle,∫ θ

(3 cos2 θ +
1
3

sin2 θ) dθ

=
1
2

(1 − cos 2θ)
{

3
2

(1 + cos 2θ) +
1
6

(1 − cos 2θ)
}

=
1
12

(1 − cos 2θ){9(1 + cos 2θ) + (1 − cos 2θ)}

=
1
12

(1 − cos 2θ)(10 + 8 cos 2θ) =
1
6

(1 − cos 2θ)(5 + 4 cos 2θ)

=
1
6

(5 − cos 2θ − 4 cos2 2θ) =
1
6
{5 − cos 2θ − 2(1 + cos 4θ)}

=
1
6

(3 − cos 2θ − 2 cos 4θ) =
1
2
− 1

6
cos 2θ − 1

3
cos 4θ.

The flux is obtained by insertion,∫
F

V · n dS = a4

∫ π
2

0

sin2 θ

(
1
3

sin2 θ + 3 cos2 θ

)
dθ

= a4

∫ π
2

0

{
1
2
− 1

6
cos 2θ − 1

3
cos 4θ

}
dθ

= a4 · 1
2
· π

2
− a4 · 1

6
· 1
2
[sin 2θ]

π
2
0 − a4 · 13 · 1

4
[sin 4θ]

π
2
0 =

πa4

4
.
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4) Let E = {(x, y) | x2 + y2 ≤ 1} be the unit disc. Then a parametric description of the surface
F is given by

{(x, y, xy) | (x, y) ∈ E},
where the normal vector is

N(x, y) =

∣∣∣∣∣∣
ex ey ez

1 0 y
0 1 x

∣∣∣∣∣∣ = (−y,−x, 1),

and clearly, N · ez = 1 > 0.

Then the flux of the vector field

V(x, y, z) = (x + y, x − y, y2 + z)

through F is given by∫
F

V · n dS =
∫

E

V · N dx dy =
∫

E

(x + y, x − y, y2 + xy) · (−y,−x, 1) dx dy

=
∫

E

{−xy − y2 − x2 + xy + y2 + xy
}

dx dy =
∫

E

(xy − x2) dx dy

=
∫ 2π

0

{∫ 1

0

�2(cos ϕ · sinϕ − cos2 ϕ)� d�

}
dϕ

=
1
4

∫ 2π

0

(cos ϕ · sinϕ − cos2 ϕ) dϕ

= 0 − 1
4
· 2π · 1

2
= −π

4
.

5) The surface F is a disc parallel to the XY -plane at the height h. We choose

E = {(x, y) | x2 + y2 = �2 ≤ a2}.
as the parameter domain. Then the flux through F is∫

F
V · n dS =

∫
E

h

(x2 + y2 + h2)
3
2

dx dy = h

∫ 2π

0

{∫ a

0

1
(�2 + h2)

3
2

� d�

}
dϕ

= h · 2π
[

1
2

(−2)
1√

�2 + h2

]a

�=0

= 2πh

(
1√
h2

− 1√
a2 + h2

)

= 2π
(

1 − h√
a2 + h2

)
.

6) In this case F is a cylinder surface which is given in semi polar coordinates by the parametric
description

{(a, ϕ, z) | ϕ ∈ [0, 2π], z ∈ [−h, h]},
and the parameter domain becomes

E = {(ϕ, z) | ϕ ∈ [0, 2π], z ∈ [−h, h]} = [0, 2π] × [−h, h].
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Figure 12: The surface F of Example 2.1.6 for a = 1 og h = 1.

The unit normal vector pointing away from the Z-axis is

n = (cos ϕ, sin ϕ, 0),

and the area element on F is

dS = ds dz = a dϕdz,

thus the flux through F is∫
F

V · n dD =
∫

E

a

(a2 + z2)
3
2

(cos2 ϕ + sin2 ϕ + 0) a dϕdz

= a2 · 2π
∫ h

−h

1
(a2 + z2)

3
2

dz = 4πa2

∫ h

0

1
(a2 + z2)

3
2

dz.

It is natural here to introduce the substitution

z = a sinh t, dz = a cosh t dt, t = Arsinh
(z

a

)
.

Then we get the flux through the surface∫
F

V · n dS = 4πa2

∫ Arsinh( h
a )

0

a cosh t

a3 cosh3 t
dt = 4π

∫ Arsinh( h
a )

0

dt

cosh2 t

= 4π[tanh t]Arsinh( h
a )

0 = 4π

[
sinh t√

1 + sinh2 t

]Arsinh( h
a )

0

= 4π ·
h

a√
1 +

h2

a2

=
4πh√

a2 + h2
.

Remark. The field of Example 2.1.5 and Example 2.1.6 is the so-called Coulomb field, cf.
Example 3.3. It is tempting to combine the results of Example 2.1.5 and Example 2.1.6
to find the flux of the Coulomb field through the surface of the whole cylinder. Since n = −ez,
when we consider the surface of Example 2.1.5 at height −h, it follows that

flux = 2π
(

1 − h√
a2 + h2

)
+

4πh√
a2 + h2

− 2π
( −h√

h2
− (−h)√

a2 + h2

)
= 4π. ♦
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7) Here

N(u, v) =

∣∣∣∣∣∣
ex ey ez

cos v sin v 0
−u sin v u cos v h

∣∣∣∣∣∣ = (h sin v,−h cos v, u),

so the flux of the vector field (y, x, x + y + z) through F is∫
F

V · n dS =
∫

E

V · N(u, v) du dv

=
∫

E

(u sin v, u cos v, u(cos v+sin v)+hv) · (h sin v,−h cos v, u) du dv

=
∫

E

(hu sin2 −hu cos2 v + u2(cos v + sin v) + huv)du dv

=
∫

E

hu(−cos 2v)du dv+
∫

E

u2(cos v+sin v)du dv+h

∫
E

uv du dv

= 0 + 0 + h

∫ 1

0

u du

∫ 2π

0

v dv = h · 1
2
· 1
2
· 4π2 = hπ2.

8) The normal vector of the surface F of the parametric description

r(u, v)
(√

u cos v,
√

u sin v, f3/2
)

, 1 ≤ u ≤ 2, 0 ≤ v ≤ u,

is

N(u, v) =
∂r
∂u

× ∂r
∂v

=

∣∣∣∣∣∣∣∣∣

ex ey ez
1

2
√

u
cos v

1
2
√

u
sin v 0

−√
u sin v

√
u cos v

3
2
√

v

∣∣∣∣∣∣∣∣∣
=

(
3
4

√
v

u
sin v,−3

4

√
v

u
cos v,

1
2

)
.

The flux of V(x, y, z) = (y,−x, z2) through F is∫
F

V · n dS =
∫

E

V(u, v) · N(u, v) du dv

=
∫

E

(√
u sin v,−√

u cos v, v3
) · (3

4

√
v

u
sin v,−3

4

√
v

u
cos v,

1
2

)
du dv

=
∫

E

{
3
4
√

v sin2 v +
3
4
√

v cos2 v +
1
2

v3

}
du dv

=
∫

E

{
3
4
√

v +
1
2

v3

}
du dv =

∫ 2

1

{∫ u

0

(
3
4

v
1
2 +

1
2

v3

)
dv

}
du

=
∫ 2

1

[
3
4
· 2
3

v
3
2 +

1
8

v4

]u

0

du =
∫ 2

1

(
1
2

u
3
2 +

1
8

u4

)
du

=
[
1
2
· 2
5

u
5
2 +

1
40

u5

]2

1

=
1
5

(
√

2)5 +
1
40

· 25 − 1
5
− 1

40

=
1
40

(8 · 4
√

2 + 32 − 8 − 1) =
1
40

(32
√

2 + 23) =
4
√

2
5

+
23
40

.
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9) Here we have [cf. Example 2.1.7]

N(u, v) =

∣∣∣∣∣∣
ex ey ez

cos v sin v 0
−u sin v u cos v h

∣∣∣∣∣∣ = (h sin v,−h cos v, u),

and the flux of the vector field (yz,−xz, hz) through the surface F becomes∫
F

V · n dS =
∫

E

V · N(u, v) du dv

=
∫

E

(uhv sin v,−uhv cos v, h2v) · (h sin v,−cos v, u) du dv

= h

∫
E

(uh sin2 v + uh cos2 v + huv) du dv = h2

∫
E

u(1 + v) du dv

= h2

∫ 1

0

u du ·
∫ 2π

0

(v + 1)dv = h2 · 1
2

[
v2

2
+ v

]2π

0

=
h2

2
· {2π2 + 2π} = h2π(π + 1).
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3 The divergence and rotation of a vector field

Example 3.1 Find coordinate expressions of the vector fields rot(rot V) and grad(div V).
Then prove the formula

grad(div V) − rot(rot V) = (div(grad Vx),div(grad Vy),div(grad Vz)) .

A Calculation with nabla.

D The results can be obtained by very mechanical calculations. It is a matter of taste whether one
prefers the notation above or

grad = �, div = �·, rot = �× .

We shall here use the latter, thereby keeping the formal connection to the geometric relationships
that the operations are describing.

I Let V ne a vector field of class C2. Then

rotV = �× V =
(

∂Vz

∂y
− ∂Vy

∂z

)
ex +

(
∂Vx

∂z
− ∂Vz

∂x

)
ey +

(
∂Vy

∂x
− ∂Vx

∂y

)
ez.

By repeating this pattern we get for the double rotation that

rot(rot V) = �× (�× V)

=
(

∂

∂y

{
∂Vy

∂x
− ∂Vx

∂y

}
− ∂

∂z

{
∂Vx

∂z
− ∂Vz

∂x

})
ex

+
(

∂

∂z

{
∂Vz

∂y
− ∂Vy

∂z

}
− ∂

∂x

{
∂Vy

∂x
− ∂Vx

∂y

})
ey

+
(

∂

∂x

{
∂Vx

∂z
− ∂Vz

∂x

}
− ∂

∂y

{
∂Vz

∂y
− ∂Vy

∂z

})
ez,

thus

rot(rot V) = �× (�V)

=
(
−∂2Vx

∂y2
− ∂2Vx

∂z2
+

∂2Vz

∂x∂z
+

∂2Vy

∂x∂y

)
ex

+
(
−∂2Vy

∂x2
− ∂2Vy

∂z2
+

∂2Vy

∂z2
+

∂2Vx

∂x∂y
+

∂2Vz

∂y∂z

)
ey

+
(
−∂2Vz

∂x2
− ∂2Vz

∂y2
+

∂2Vy

∂y∂z
+

∂2Vz

∂x∂z

)
ez

= − (�2Vx,�2Vy,�2Vz

)
+

∂

∂x

{
∂Vx

∂x
+

∂Vy

∂y
+

∂Vz

∂z

}
ex

+
∂

∂y

{
∂Vx

∂x
+

∂Vy

∂y
+

∂Vz

∂z

}
ey

+
∂

∂z

{
∂Vx

∂x
+

∂Vy

∂y
+

∂Vz

∂z

}
ez

= −�2 V + �(� · V)
= −(div(grad Vx),div(grad Vy),div(grad Vz)) + grad(div V),
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and the formula follows by a rearrangement.

Remark 1. Notice that the formula can also be written

�(� · V) −�× (�× V) = �2V. ♦

Remark 2. We note for completeness

�(� · V) = �
(

∂Vx

∂x
+

∂Vy

∂y
+

∂Vz

∂z

)

=
(

∂2Vx

∂x2
+

∂2Vy

∂x∂y
+

∂2Vz

∂x∂z

)
ex +

(
∂2Vx

∂x∂y
+

∂2Vy

∂y2
+

∂2Vz

∂y∂z

)
ey

+
(

∂2Vx

∂x∂z
+

∂2Vy

∂y∂z
+

∂2Vz

∂z2

)
ez. ♦

Example 3.2 Find div V and rot V for each of the following vector fields on R
3.

1) V(x, y, z) = (xz,−y2, 2x2y).

2) V(x, y, z) = (z + sin y,−z + cos y, 0).

3) V(x, y, z) = (exy, cos(xy), cos(xz2)).

4) V(x, y, z) = (x2 + yz, y2 + xz, z2 + xy).

5) V(x, y, z) = (x + Arctan y, 3x − z, 2yz).

6) V(x, y, z) = (xz3,−2x2yz, 2yz4).

7) V(x, y, z) = (sinh(xyz), z, x).

8) V(Arctan z,Arctan x,Arctan y).

A This is just a simple exercise in finding the divergence and the rotation.

D Insert into the formulæ

div V = � · V og rot V = �× V.

I 1) We get for V = (xz,−y2, 2x2y),

div V = z − 2y + 0 = z − 2y

and

rot V =

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

xz −y2 2x2y

∣∣∣∣∣∣∣∣∣∣∣
= (2x2, x − 4xy, 0).
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2) We get for V = (z + sin y,−z + cos y, 0),

div V = 0 − sin y + 0 = − sin y

and

rot V =

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

z + sin y −z + cos y 0

∣∣∣∣∣∣∣∣∣∣∣
= (1, 1,− cos y).

3) We get for V = (exy, cos(xy), cos(xz2)),

div V = y exy − x sin(xy) − 2xz sin(xz2)

and

rot V =

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

exy cos(xy) cos(xz2)

∣∣∣∣∣∣∣∣∣∣∣
= (0, z2 sin(xz2),−y sin(xy) − x exy).

4) We get for V = (x2 + yz, y2 + xz, z2 + xy) f̊as,

div V = 2(x + y + z)

and

rot V =

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

x2 + yz y2 + xz z2 + xy

∣∣∣∣∣∣∣∣∣∣∣
= (x − x, y − y, z − z) = (0, 0, 0) = 0.

5) When

V = (x + Arctan y, 3x − z, eyz) =
(
x + Arctan y, 3x − z, eln 2·yz

)
we find

div V = 1 + 0 + ln 2 · y · eln 2·yz = 1 + ln 2 · y · 2yz

and

rot V =

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

x + Arctan y 3x − z eln 2·yz

∣∣∣∣∣∣∣∣∣∣∣
=
(

ln 2 · z · 2yz + 1, 0, 3 − 1
1 + y2

)
.
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6) If V = (xz3,−2x2yz, 2yz4), then

div V = z3 − 2x2z + 8yz3

and

rot V =

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

xz3 −2x2yz 2yz4

∣∣∣∣∣∣∣∣∣∣∣
= (2z4 + 2x2y, 3xz2,−4xyz).

7) If V = (sinh(xyz), z, x), then

div V = yz cosh(xyz)

and

rot V =

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

sinh(xyz) z x

∣∣∣∣∣∣∣∣∣∣∣
= (−1, xy cosh(xyz) − 1,−xz cos(xyz)).
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8) If V = (Arctan z,Arctan x,Arctan y) then

div V = 0

and

rot V =

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

Arctan z Arctan x Arctan y

∣∣∣∣∣∣∣∣∣∣∣
=
(

1
1 + y2

,
1

1 + z2
,

1
1 + x2

)
.

Example 3.3 Find the divergence and the rotation of the vector field (the so-called Coulomb vector
field),

V(x, y, z) =
1
r3

(x, y, z), (x, y, z) 	= (0, 0, 0), r =
√

x2 + y2 + z2.

[Cf. Example 4.3]

A Divergence and rotation.

D Compute div V = � · V and rot V = �× V.

I First notice that

∂r

∂x
=

x

r
,

∂r

∂y
=

y

r
og

∂r

∂z
=

z

r
.

These are easy rules of calculations, by which

div V =
∂

∂x

( x

r3

)
+

∂

∂y

( y

r3

)
+

∂

∂z

( z

r3

)

=
(

1
r3

− 3x
r4

∂

∂x

)
+
(

1
r3

− 3y
r4

∂r

∂y

)
+
(

1
r3

− 3z
r4

∂r

∂z

)

=
3
r3

− 3
r4

· 1
r

(x2 + y2 + z2) =
3
r3

− 3
r3

= 0,
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and

rot V =

∣∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

x

r3

y

r3

z

r3

∣∣∣∣∣∣∣∣∣∣∣∣
=

{
z

∂

∂y

(
1
r3

)
− y

∂

∂z

(
1
r3

)}
ex +

{
x

∂

∂z

(
1
r3

)
− z

∂

∂x

(
1
r3

)}
ey

+
{

y
∂

∂x

(
1
r3

)
− x

∂

∂y

(
1
r3

)}
ez

= − 3
r4

(
z

∂r

∂y
−y

∂r

∂z
, x

∂r

∂z
−z

∂r

∂x
, y

∂r

∂x
−x

∂r

∂y

)

= − 3
r4

(
z · y

r
−y · z

r
, x · z

r
−z · x

r
, y · x

r
−x · y

r

)
= (0, 0, 0).

Remark. A variant is

rot V =

∣∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

x

r3

y

r3

z

r3

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

(
1
r3

)
∂

∂y

(
1
r3

)
∂

∂z

(
1
r3

)
x y z

∣∣∣∣∣∣∣∣∣∣

= − 3
r4

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂r

∂x

∂r

∂y

∂r

∂z

x y z

∣∣∣∣∣∣∣∣∣∣∣
= − 3

r5

∣∣∣∣∣∣
ex ey ez

x y x
x y z

∣∣∣∣∣∣ = − 3
r5

x × x = 0. ♦

Example 3.4 Choose the constants α and β, such that the vector field

V(x, y, z) = (xyz)β (xα, yα, zα) , (x, y, z) ∈ R
3
+,

has zero rotation.

A Rotation free vector field.

D Compute rot V.
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I We get by a calculation,

rot V =

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

xα+βyβzβ xβyα+β xβyβzα+β

∣∣∣∣∣∣∣∣∣∣∣
= β

(
xβyβ−1zα+β − xβyα+βzβ−1

)
ex + β

(
xα+βyβzβ−1 − xβ−1yβzα+β

)
ey

+β
(
xβ−1yα+βzβ − xα+βyβ−1zβ

)
ez

= β(xyz)β
(
y−1zα − yβz−1, xαz−1 − x−1zα, x−1yα − xαy−1

)
.

If β = 0, then the factor outside the vector is 0, and the vector field becomes rotation free in R
3
+.

This corresponds to the vector field

V(x, y, z) = (xα, yα, zα) , α ∈ R,

where the condition (x, y, z) ∈ R
3
+ assures that the vector is always defined.

The second possibility is that the vector is(
y−1zα − yαz−1, xαz−1 − x−1zα, x−1yα − xαy−1

)
= 0.

This gives the condition α = −1, in which case the vector field becomes

V(x, y, z) =
(
xβ−1yβzβ , xβyβ−1zβ , xβyβzβ−1

)
= (xyz)β

(
1
x

,
1
y

,
1
z

)

which is also free of rotation.

 The divergence and rotation of a vector fi eld
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4 Gauß’s theorem

Example 4.1 Find in each of the following cases the flux of the given vector field V through the
surface of the given set Ω in the space.

1) The vector field V(x, y, z) = (5xz, y2 − 2yz, 2yz), defined in the domain Ω by x2 + y2 ≤ a2 y ≥ 0,
0 ≤ z ≤ b.

2) The vector field V(x, y, z) =
(
2x −√

1 + z2, x2y,−xz2
)
, defined in the cube Ω = [0, 1]×[0, 1]×[0, 1].

3) The vector field V(x, y, z) = (x2+y2, y2+z2, z2+x2) given in the domain Ω defined by x2+y2+z2 ≤
a2 and z ≥ 0.

4) The vector field V(x, y, z) =
(
2x + 3

√
y2 + z2, y − cosh(xz), y2 + 2z

)
, defined in the domain

Ω = K((3,−1, 2); 3).

5) The vector field V(x, y, z) = (−x+cos z,−xy, 3z+ey), defined in the domain Ω given by x ∈ [0, 3],
y ∈ [0, 2], z ∈ [0, y2].

6) The vector field �T , where T (x, y, z) = x2+y2+z2 is defined in the domain Ω given by x2+y2 ≤ 2
and z ∈ [0, 2].

7) The vector field V(x, y, z) = (x3 + xy2, 4yz2 − 2x2y,−z3), defined in the ball given by

x2 + y2 + z2 ≤ a2.

8) The vector field V(x, y, z) = (2x, 3y,−z), defined in the ellipsoid Ω, given by
(x

a

)2

+
(y

b

)2

+(z

c

)2

≤ 1.

A Flux out of a body in space.

D Apply Gauß’s theorem of divergence.

I According to Gauß’s theorem the flux is given by∫
∂Ω

V · n dS =
∫

Ω

div V dΩ.

1) Since

div V = 5z + 2y − 2z + 2y = 3z + 4y,

the flux is∫
Ω

div V dΩ =
∫ b

0

3z dz · 1
2

π a2 + 4
∫ b

0

∫ π

0

{∫ a

0

� sin ϕ · � d�

}
dϕdz =

3
4

π a2b2 +
8
3

a3b.

2) Since

div V = 2 + x2 − 2xz,

the flux is∫
Ω

divV dΩ = 2 +
∫

Ω

x2 dΩ −
∫

Ω

2xz dΩ = 2 +
1
3
− 1

2
=

11
6

.
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3) Here

div V = 2x + 2y + 2z.

It follows by the symmetry that∫
Ω

2x dΩ =
∫

Ω

2y dΩ = 0.

We obtain the flux by an application of Gauß’s theorem, the argument of symmetry above and
semi polar coordinate,∫

Ω

div V dΩ =
∫

Ω

2x dΩ +
∫

Ω

2y dΩ +
∫

Ω

2z dΩ =
∫

Ω

2z dΩ

=
∫ 2π

0

{∫ a

0

{∫ √
a2−�2

0

2z dz

}
� d�

}
dϕ

= 2π
∫ a

0

(a2 − �2)� d� = 2π
[
a2

2
�2 − �4

4

]a

0

= 2π · a4

4
=

πa4

2
.
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4) Since

div V = 2 + 1 + 2 = 5,

the flux is∫
Ω

div V dΩ = 5vol(K((3,−1, 2); 3)) = 5 · 4π
3

· 33 = 180π.

5) Since

div V = −1 − x + 3 = 2 − x,

the flux is given by∫
Ω

div V dΩ =
∫

Ω

(2 − x) dΩ =
∫ 3

0

(2 − x)

{∫ 2

0

{∫ y2

0

dz

}
dy

}
dx

=
[
2x − x2

2

]3

0

·
∫ 2

0

y2 dy =
(

6 − 9
2

)
·
[
y3

3

]2

0

=
3
2
· 8
3

= 4.

6) Since

div V = Δ(x2 + y2 + z2) = 2 + 2 + 2 = 6,

the flux is given by∫
Ω

div V dΩ = 6vol(Ω) = 6 · π · (
√

2)2 · 2 = 24π.

7) Here,

div V = 3x2 + y2 + 4z2 − 2x2 − 3z2?x2 + y2 + z2.

The the flux is easiest computed in spherical coordinates,

∫
Ω

div V dΩ =
∫ 2π

0

{∫ π

0

{∫ a

0

r2 · r sin θ dr

}
dθ

}
dϕ = 2π

[
r5

5

]1

0

· [− cos θ]π0 =
4
5

π a5.

8) From

div V = 2 + 3 − 1 = 4,

follows that the flux is∫
Ω

div V dΩ = 4vol(Ω) = 4 · 4π
3

abc =
16
3

π abc.

 Gauβ’s theorem
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Figure 13: The meridian cut of i Example 4.2.2.

Example 4.2 Find in each of the following cases the flux of the given vector field V through the
surface of the described body of revolution Ω.

1) The vector field is V(x, y, z) = (y2 + z4, (x− a)2 + z4, x2 + y2), and the meridian cat of Ω is given
by � ≤ a and 0 ≤ z ≤ 4

√
a2 − �2.

2) The vector field is

V(x, y, z) = (x2 − 2xy, 2y2 + 6x2z2, 2z − 2xz − 2yz),

and the meridian cut of Ω is given by 0 ≤ z ≤ 1 and � ≤ e−z.

3) The vector field is V(x, y, z))(x2−xz, y2−yz, z2), and the meridian cut of Ω is given by � ≤ √
ln z

and z ∈ [e, e2].

4) The vector field is V(x, y, z) = (2x + 2y, 2y + z, z + 2x), and the meridian cut of Ω is given by

� ≤ a,
�2 − a2

a
≤ z ≤

√
a2 − �.

A Flux from the surface of a body of revolution.

D Sketch if possible the meridian cut. Compute div V and apply Gauß’s theorem.

I 1) From div V = 0, follows trivially that the flux is∫
Ω

div V dΩ = 0,

and we do not have to think about the body of revolution at all.
2) We conclude from

div V = 2x − 2y + 4y + 2 − 2x − 2y = 2,

that the flux is∫
Ω

div V dΩ = 2vol(Ω) = 2
∫ 1

0

π e−2z dz = π
(
1 − e−2

)
.

 Gauβ’s theorem
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Figure 14: The meridian cut of Example 4.2.3.
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Figure 15: The meridian cut of Example 4.2.4.

3) Here,

div V = 2x − z + 2y − z + 2z = 2x + 2y.

If we put

B(z) = {(x, y) | x2 + y2 ≤ ln z}, z ∈ [e, e2],

then the flux is∫
Ω

div V dΩ =
∫

Ω

(2x + 2y) dΩ =
∫ e2

e

{∫
B(z)

(2x + 2y) dx dy

}
dz = 0,

because it follows from the symmetry that∫
B(z)

x dx dy =
∫

B(z)

y dx dy = 0.

4) It follows from the equations of the meridian cut that when z > 0 we have the quarter of
a circle, and when z < 0 we get an arc of a parabola. It is natural to split the cut of Ω0

correspondingly in Ω1 (for z > 0) and Ω2 (for z < 0).

 Gauβ’s theorem
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Since

div V = 2 + 2 + 1 = 5,

we get by Gauß’s theorem that the flux is

flux =
∫

∂Ω

V · n dS =
∫

Ω

div V dΩ = 5vol(Ω) = 5 vol(Ω1) + 5 vol(Ω2)

= 5 · 1
2
· 4π

3
a3 + 5

∫ 0

−a

π�(z)2 dz =
10π
3

a3 + 5π
∫ 0

−a

(az + a2) dz

=
10π
3

a3 + 5π
[
az2

2
+ a2z

]0

−a

=
10π
3

a3 + 5π
(
−a3

2
+ a3

)

= 5πa3

(
2
3

+
1
2

)
= 5πa3 · 7

6
=

35
6

πa3.

 Gauβ’s theorem
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Example 4.3 Let Ω denote the cylinder given by z ∈ [−h, h], � ∈ [0, a], ϕ ∈ [0, 2π]. Find the flux
through the surface ∂Ω of the Coulomb vector field

V(x, y, z) =
1
r3

(x, y, z), (x, y, z) 	= (0, 0, 0), r =
√

x2 + y2 + z2.

[Cf. Example 2.1.5, Example 2.1.6 and Example 3.3].

A Flux through the surface of a body.

D Think of how to treat the singularity at (0, 0, 0) before we can apply Gauß’s theorem. Find the
flux.

I When (x, y, z) 	= (0, 0, 0), we get [cf. Example 3.3]

∂V1

∂x
=

1
r3

− 3
r5

x2,
∂V2

∂y
=

1
r3

− 3
r5

y2,
∂V3

∂z
=

1
r3

− 3
r5

z2,

hence

div V =
3
r3

− 3
r5

(x2 + y2 + z2) =
3
r3

− 3
r5

r2 = 0.

One could therefore be misled to “conclude” that the flux is 0, “because (0, 0, 0) is a null set”; but
this is not true.

Let R ∈ ]0,min{a, h}[. An application of Gauß’s theorem shows that the flux through the surface
of Ω \ K(0;R) is∫

Ω\K(0;R)

div V dΩ = 0,

because (0, 0, 0) /∈ Ω \ K(0;R). Hence, the flux is

∫
∂Ω

V · n dS =

{∫
∂Ω

V · n dS −
∫

∂K(0;R)

V · n dS

}
+
∫

∂K(0;R)

V · n dS

=
∫

Ω\K(0;R)

div V dΩ +
∫

∂K(0;R)

V · n dS =
∫

∂K(0;R)

V · n dS.

On the boundary ∂K(0;R) the outer unit normal vector is given in rectangular coordinates by

n =
1
R

(x, y, z), thus

V · n =
1

R3
(x, y, z) · 1

R
(x, y, z) =

1
R2

.

The area element is given in polar coordinates by

dS = R2 sin θ dθ dϕ.

Then the flux through ∂Ω is given by∫
∂Ω

V · n dS =
∫

∂K(0;R)

V · n dS =
∫ 2π

0

{∫ π

0

1
R2

· R2 sin θ dθ

}
dϕ = 2π[− cos θ]π0 = 4π,

 Gauβ’s theorem
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Figure 16: The surface of Example 4.4 for a = 1.

Example 4.4 We shall find the flux Φ of the vector field

V(x, y, z) = (ey + cosh z, ex + sinh z, x2z2), (x, y, z) ∈ R
3,

through the oriented half sphere F given by

x2 + y2 + z2 − 2az = 0, z ≤ a, n · ez ≥ 0.

It turns up that the integration over F is rather difficult, while on the other hand the expression of div
V is fairly simple. One shall therefore try to arrange the calculations such that it becomes possible to
apply Gauß’s theorem.

1) Construct a closed surface by adding an oriented dist F1 to F . Sketch the meridian half plane.

2) Find the flux Φ1 of the vector field V through F1.

3) Apply Gauß’s theorem on the body Ω of the boundary ∂Ω = F ∪ F1, and then find Φ.

A Computation of the flux of a vector field through a surface where a direct calculation becomes very
difficult.

D Apply the guidelines, i.e. add a surface F1, such that F ∪ F1 surrounds a body, on which Gauß’s
theorem can be applied. Hence, something is added and then subtracted again, and then one uses
Gauß’s theorem.

I 1) When we add a2 to both sides of the equation of the half sphere, we obtain

a2 = x2 + y2 + z2 − 2az + a2 = �2 + (z − a)2.

It follows from the condition n · ez ≥ 0 that the curve in the meridian half plane of F is the
quarter of a circle of centrum (0, a) and radius a,

�2 + (z − a)2 = a2, z ≤ a, � ≥ 0.

Note that the normal vector has an upwards pointing component.
The disc (“the lid”), which shall be added is of course the dist in the plane z = a of centrum
(0, 0, a) and radius a.

 Gauβ’s theorem
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Figure 17: The meridian curve of Example 4.4 for a = 1.

2) The flux of V through F1 of normal ez is∫
F1

V · n dS =
∫
F1

x2a2 dS = a2

∫ 2π

0

cos2 ϕ

{∫ a

0

�2 · � d�

}
dϕ = a2π ·

[
�4

4

]a

0

=
π

4
a6.

3) Let Ω be the domain which is surrounded by F1 ∪ (−F), where −F indicates that we have
reversed the orientation, such that the normal is pointing away from Ω) on both F1 and −F .

Now

div V = 0 + 0 + 2x2z = 2xz = 2x2(z − a) + 2ax2,

so it follows by Gauß’s theorem that

−
∫
F

V · n dS +
∫
F1

V · n dS = −
∫
F

V · n dS +
π

4
a6 =

∫
Ω

div V dΩ,

hence by a rearrangement,

Φ =
∫
F

V · n dS =
π

4
a6 −

∫
Ω

div V dΩ =
π

4
a6 −

∫
Ω

2ax2 dΩ −
∫

Ω

2x2(z − a) dΩ

=
π

4
a6 − a

∫
Ω

dΩ +
∫

Ω

(x2 + y2)(a − z) dΩ,

where we have used the symmetry in x and y in the domain of integration in the latter equality.

By the transformation z � a − z the half ball Ω is mapped into the half ball

Ω1 = {(x, y, z) | x2 + y2 + z2 ≤ a2, z ≥ 0},
so

Φ =
π

4
a6 − a

∫
Ω1

(x2 + y2) dΩ +
∫

Ω1

(x2 + y2)z dΩ.

When we use the slicing method, we see that Ω1 at height z ∈ [0, a] is cut into the circle

B(z) = {(x, y, z) | x2 + y2 ≤ a2 − z2} = {(x, y, z) | � ≤
√

a2 − z2}, z ∈ [0, a] fixed,

 Gauβ’s theorem
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thus

a

∫
Ω1

(x2 + y2) dΩ = a

∫ a

0

{∫
B(z)

(x2 + y2) dS

}
dz

= a

∫ a

0

{∫ 2π

0

[∫ √
a2−z2

0

�2 · � d�

]
dϕ

}
dz = 2πa

∫ a

0

[
�4

4

]√a2−z2

0

dz

=
π

2
a

∫ a

0

(a2 − z2)2 dz =
π

2
a

∫ a

0

(z4 − 2a2z2 + a4) dz

=
π

2
a

[
z5

5
− 2a2

3
z3 + a4z

]a

0

=
π

2
a

{
a5

5
− 2

3
a5 + a5

}

=
π

2
a6 ·

(
1
5
− 2

3
+ 1

)
=

4π
15

a6,

and by some reuse of previous results,∫
Ω1

(x2 + y2)z dΩ =
∫ a

0

z

{∫
B(z)

(x2 + y2) dS

}
dz

=
π

2

∫ a

0

(z2 − a2)2 · z dz =
π

4

[
1
3
(z2 − a2)3

]a

0

=
π

12
a6.
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Finally, we get by insertion that

Φ =
π

4
a6 − a

∫
Ω1

(x2 + y2) dΩ +
∫

Ω1

(x2 + y2)z dΩ

=
π

4
a6 − 4π

15
a6 +

π

12
a6 =

πa6

60
(15 − 16 + 5) =

πa6

15
.

Example 4.5 Let a set Ω ⊂ R
3 and a vector field V : R

3 → R
3 be given in the following way,

Ω =
{

(x, y, z)
∣∣∣∣ x2 + y2 − a2

a
≤ z ≤

√
a2 − x2 − y2

}
,

V(x, y, z) = (2x + 2y, 2y + z, z + 2x).

The boundary ∂Ω is oriented such that the normal vector is always pointing away from the body. By
F1 and F2 we denote the subsets of ∂Ω, for which z ≥ 0, and z ≤ 0, respectively. Find the fluxes of
V through F1 and F2, respectively.

A Flux through surfaces.

D Apply both rectangular and polar coordinates. Check Gauß’s theorem. This cannot be applied
directly. It can, however, come into play by a small extra argument.

Fiannly, compute the fluxes.

–1

–0.5

0

0.5

1

y

0.2 0.4 0.6 0.8 1 1.2

x

Figure 18: The cut of the meridian half plane for a = 1.

I By using semi polar coordinates we obtain that

az ≥ �2 − a2 og z2 + �2 ≤ a2,

and the meridian half plane becomes like shown on the figure.

As

vol(Ω) = vol(Ω1) + vol(Ω2) =
1
2
· 4π

3
a3 +

∫ 0

−a

π�(z)2 dz =
2π
3

a3 + π

∫ 0

−a

a(a + z) dz

=
2π
3

a3 +
π

2
a

∫ a

0

2t dt =
2π
3

a3 +
π

2
a3 =

7π
6

a3,
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and div V = 2 + 2 + 1 = 5, it follows from Gauß’s theorem that

flux(F) = flux(F1) + flux(F2) =
∫
F

V · n dS =
∫

Ω

div V dΩ = 5vol(Ω) =
35π
6

a3.

The parametric description of F1 is chosen as

r(u, v) =
(
u, v,

√
a2 − u2 − v2

)
, u2 + v2 ≤ a2,

thus

∂r
∂u

=
(

1, 0,− u√
a2 − u2 − v2

)
and

∂r
∂v

=
(

0, 1,− v√
a2 − u2 − v2

)
,

from which we get the normal vector

N(u, v) =

∣∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

1 0 − u√
a2 − u2 − v2

0 1 − v√
a2 − u2 − v2

∣∣∣∣∣∣∣∣∣∣∣∣
=

1√
a2 − u2 − v2

(
u, v,

√
a2 − u2 − v2

)
,

which is clearly pointing away from the body, because the Z-coordinate is +1.

If we put B =
{
(u, v) | u2 + v2 < a2

}
, it follows from (x, y, z) =

(
u, v,

√
a2 − u2 − v2

)
that

flux(F1) =
∫
F1

V · n dS =
∫

B

V(u, v) · N(u, v) du dv

=
∫

B

(2u+2v, 2v+
√

a2−u2−v2,
√

a2−u2−v2+2u)

· 1√
a2−u2−v2

(u, v,
√

a2−u2−v2)dudv

=
∫

B

1√
a2−u2−v2

{2u2+2uv+2v2+v
√

a2−u2−v2

+(a2 − u2 − v2) + 2u
√

a2 − u2 − v2}dudv

=
∫

B

a2 + u2 + v2

√
a2 − u2 − v2

du dv + 0 =
∫ 2π

0

{∫ a

0

a2+�2√
a2−�2

· � d�

}
dϕ = π

∫ a2

0

a2+t√
a2−t

dt

= π

∫ a2

0

{
2a2

√
a2 − t

−
√

a2 − t

}
dt = π

[
−4a2

√
a2 − t +

2
3
(
√

a2 − t)3
]a2

0

= π

{
4a2

√
a2 − 2

3
a3

}
=

10π
3

a3.

Hence

flux(F2) = flux(F) − flux(F1) =
35π
6

a3 − 10π
3

a3 =
5
2

πa3,
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and thus

flux(F1) =
10π
3

a3 and flux(F2) =
5π
2

a3.

Alternatively, F2 is given by the parametric description

r = (x, y, z) =
(

u, v,
1
a

(u2 + v2 − a2)
)

, (u, v) ∈ B,

thus

∂r
∂u

=
(

1, 0,
2u
a

)
og

∂r
∂v

=
(

0, 1,
2v
a

)

and hence

N1(u, v) =
∂r
∂u

× ∂r
∂v

=

∣∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

1 0
2u
a

0 1
2v
a

∣∣∣∣∣∣∣∣∣∣∣∣
=
(
−2u

a
,−2v

a
, 1
)

.
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This normal vector is pointing inwards, so we are forced to choose

N(u, v) = −N1(u, v) =
(

2u
a

,
2v
a

,−1
)

.

Then

flux(F2) =
∫
F2

V · n dS =
∫

B

V(u, v) · N(u, v) du dv

=
∫

B

(
2u+2v, 2v+

1
a

(
u2+v2−a2

)
,
1
a

(
u2+v2−a2

)) ·
(

2u
a

,
2v
a

,−1
)

du dv

=
∫

B

{
4u2

a
+

4uv

a
+

4v2

a
+

2v
a

(u2 + v2 − a2) − 1
a

(
u2 + v2 − a2

)}
du dv

=
1
a

∫
B

{
4u2 + 4v2 − u2 − v2 + a2

}
du dv + 0

=
a2

2
areal(B) +

3
a

∫
B

(u2 + v2) du dv = a · πa2 +
3
a
· 2π

∫ a

0

�2 · � d�

= πa3 +
6π
a

· a4

4
=

5π
2

a3,

in accordance with the previous found result.

Example 4.6 Let K be the ball (x0; a), and let V be a C1 vector field on A, where A ⊃ K. Prove
the following claims by using partial integration, Gauß’s divergence theorem and the formula

x =
1
2

� (x · x).

1) If the divergence of V is a constant p, then∫
K

(x − x0) · V(x) dΩ =
4
15

a5p.

2) If the rotation of V is a constant vector P, then∫
K

(x − x0) × V(x) dΩ =
4
15

a5 P.

A Generalized partial integration.

D Follow the guidelines.

I 1) It follows from

x − x0 =
1
2

� ((x − x0) · (x − x0)) =
1
2

� (‖x − x0‖2
)
,
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and f(x) = ‖x − x0‖2 that∫
K

(x − x0) · V(x) dΩ =
1
2

∫
K

� (‖x − x0‖2
) · V(x) dΩ

=
1
2

∫
∂K

n · V(x) ‖x − x0‖2dS − 1
2

∫
Ω

‖x − x0‖2 � ·V dΩ

=
1
2

a2

∫
∂K

n · V(x) dS − 1
2

p

∫
Ω

‖x − x0‖2 dΩ

=
1
2

a2

∫
Ω

� · V(x) dΩ − 1
2

p

∫ a

0

{∫ 2π

0

(∫ π

0

r2 · r2 sin θ dθ

)
dϕ

}
dr

=
1
2

pa2 · vol(Ω) − 1
2

p

∫ a

0

rr dr · 2π ·
∫ π

0

sin θ dθ

=
1
2

pa2 · 4π
3

a3 − 1
2

p · a5

5
· 2π · 2 =

pa5π

15
· {10 − 6} =

4
15

a5πp.
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2) We can now replace · by ×, hence∫
K

(x − x0) × V(x) dΩ =
1
2

∫
K

� (‖x − x0‖2
)× V(x) dΩ

=
1
2

∫
∂K

n × V(x) ‖x − x0‖2 dS − 1
2

∫
Ω

‖x − x0‖2 �×V dΩ

=
1
2

a2

∫
Ω

�× V(x) dΩ − 1
2

P
∫ a

0

{∫ 2π

0

(∫ π

0

r2 · r2 sin θ dθ

)
dϕ

}
dr

=
1
2

a2P · vol(Ω) − 1
2

P
∫ a

0

r4 dr · 2π ·
∫ π

0

sin θ dθ

=
{

1
2

a2 · 4π
3

a3 − 1
2

a5 · 2π · 2
}

P =
4
15

a5π P.

Example 4.7 Let a be a positive constant. We let T denote the subset of

T1 =
{
(x, y, z) ∈ R

3 | z ≥ 0, x2 + y2 + z2 ≤ 9a2
}

,

which also lies outside the set

T2 =
{
(x, y, z) ∈ R

3 | x2 + y2 + (z − a)1 < a2
}

,

thus T = T1 \ T2.

1) Explain why T is given in spherical coordinates by

θ ∈
[
0,

π

2

]
, ϕ ∈ [0, 2π], r ∈ [2a cos θ, 3a].

2) Find the mass of T when the density of mass on T is μ(x, y, z) =
z

a4
.

3) Find the flux of the vector field

V(x, y, z) =
(
xz + 4xy, yz − 2y2, x2y2

)
, (x, y, z) ∈ R

3,

through ∂T .

4) Find the volume of the subset T 	 of T , which is given by the inequalities

x ≥ 0, y ≥ 0, z ≥
√

x2 + y2.

A Spherical coordinates, mass, flux, volume.

D Sketch the meridian half plane; compute a space integral; apply Gauß’s theorem; once again,
consider the meridian half plane.

I 1) When we consider the meridian half plane, it follows immediately that

θ ∈
[
0,

π

2

]
and ϕ ∈ [0, 2π].

It only remains to prove that the meridian cut of ∂T2 has the equation

r = 2a cos θ.

 Gauβ’s theorem



Download free books at BookBooN.com

Calculus 2c-9

 

70  
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Figure 19: The meridian half plane for T , when a = 1. The angle between the Z-axis and the dotted
radius is θ. The two dotted lines are perpendicular to each other.

Draw a radius and the perpendicular line on this as shown by the dotted lines on the figure.
Together with the line segment [0, 2a] on the Y -axis these form a rectangular triangle. The
angle between the Z-axis and the dotted radius is θ, and the hypothenuse (the line segment on
the Z-axis) is 2a. Hence, the closest of the smaller sides (i.e. placed up to ∂T2) must have the
length 2a cos θ. This proves that the equation of ∂T2 is

r = 2a cos θ.

It then follows that r ∈ [2a cos θ, 3a] in T .

2) We have in spherical coordinates

μ(x, y, z) =
z

a4
=

r

a4
cos θ,

hence the mass

M =
∫

T

μdΩ =
∫ π

2

0

{∫ 2π

0

{∫ 3a

2a cos θ

1
a4

r cos θ · r2 sin θ dr

}
dϕ

}
dθ

=
2π
a4

∫ π
2

0

cos θ · sin θ

[
r4

4

]3a

2a cos θ

dθ =
π

2

∫ π
2

0

(
81 − 16 cos4 θ

)
cos θ sin θ dθ

=
π

2

[
−81

2
cos2 θ +

16
6

cos6 θ

]π
2

0

=
π

2

(
81
2

− 16
6

)
=

π

12
(243 − 16) =

117π
12

.

3) From

div V = z + 4y + z − 4y + 0 = 2z,

follows by Gauß’s theorem and 2) that the flux is∫
∂T

V · n dS =
∫

T

div V dΩ =
∫

T

2z dΩ = 2a4

∫
T

μdΩ =
227π

6
a4.
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Figure 20: The meridian cut of T 	 is the domain between the two circular arcs lying above the line
z = �.

4) By analyzing the meridian half plane once more we see that T 	 is given by

θ ∈
[
0,

π

4

]
, ϕ ∈

[
+,

π

2

]
, r ∈ [2a cos θ, 3a],

hence the volume is

vol(T 	) =
∫ π

4

0

{∫ π
2

0

{∫ 3a

2a cos θ

r2 sin θ dr

}
dϕ

}
dθ =

π

2

∫ π
4

0

sin θ ·
[
1
3

r3

]3a

2a cos θ

dθ

=
π

6
a3

∫ π
4

0

(
27 − 8 cos3 θ

)
sin θ dθ =

π

6
a3

[−27 cos θ + 2 cos4 θ
]π

4

0

=
π

6
a3

(
− 27√

2
+

2
4

+ 27 − 2
)

=
π

12
(51 − 27

√
2) a3.

Example 4.8 Let a be a positive constant and consider the function

f(x, y, z) = a2x2 + a3y + z4, (x, y, z) ∈ R
3.

1) Find the gradient V = �f and the tangential line integral∫
K

V · t ds,

where K is the line segment from (0, 0, a) to (2a, 3a, 0).

2) Find the flux of V through the surface of the half sphere given by

x2 + y2 + z2 ≤ a2 and z ≥ 0.

A Gradient; tangential line integral; flux.

D Apply Gauß’s theorem in 2).
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I 1) The gradient is

V = �f = (2a2x, a3, 4z3).

Now, V is a gradient field, V = �f , so∫
K

V · t ds = f(2a, 3a, 0) − f(0, 0, a) = (a2 · 4a2 + a3 · 3a) − a4 = 6a4.

2) We get by Gauß’s theorem,

flux(∂L) =
∫

∂L

V · n dS =
∫

L

div V dΩ =
∫

L

(2a2 + 12z2) dΩ

= 2a2 · 1
2
· 4π

3
a3 + 12

∫
L

z2 dΩ =
4π
3

a5 + 12
∫ a

0

z2 · π(a2 − z2) dz

=
4π
3

a5 + 12π
[
a2 · 1

3
z3 − 1

5
z5

]a

0

=
4π
3

a5 +
24
15

π a5 =
44π
15

a5.
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Example 4.9 Given the tetrahedron

T = {(x, y, z) ∈ R
3 | 0 ≤ x, 0 ≤ y, 4 − x − 2y ≤ z ≤ 8 − 2x − 4y}.

and the vector field

V(x, y, z) =
(

z cos x+3yz, x2y+x sinh z,
1
2

z2 sinx+3x2−5y2

)
, (x, y, z) ∈ R

3.

Find the flux of V through ∂T .

A Flux of a vector field through a closed surface.

D Apply Gauß’s theorem.

I It follows from

div V =
∂V1

∂x
+

∂V2

∂y
+

∂V3

∂z
= −z sin x + x3 +

1
2
· 2z sinx = x2,

by Gauß’s theorem that the flux of V through ∂T is given by

(3)
∫

∂T

V · n dS =
∫

T

div V dx dy dz =
∫

T

x2 dx dy dz.

The bounds of the tetrahedron give the estimates

4 − x − 2y ≤ z ≤ 8 − 2x − 4y = 2(4 − x − 2y),

hence 4 − x − 2y ≥ 0, and thus 0 ≤ x ≤ 4 − 2y and 0 ≤ y ≤ 2. By a reduction of (3) we then get

∫
∂T

V · n dS =
∫

T

x2 dx dy dz =
∫ 2

0

{∫ 4−2y

0

(∫
4−x−2y

8 − 2x − 4yx2 dz

)
dx

}
dy

=
∫ 2

0

{∫ 4−2y

0

x2(4−x−2y)dx

}
dy =

∫ 2

0

{∫ 4−2y

0

(4x2 − x3 − 2yx2) dx

}
dy

=
∫ 2

0

[
4
3

x3 − 1
4

x4 − 2
3

yx3

]4−2y

x=0

dy

=
∫ 2

0

{
4
3
(2{2 − y})3 − 1

4
(2{2 − y})4 − 2

3
y (2{2 − y})3

}
dy

=
∫ 2

0

{
32
3

(2 − y)3 − 16
4

(2 − y)4 − 16
3

y (2 − y)3
}

dy

=
(

16
3

− 16
4

)∫ 2

0

(2 − y)4 dy =
16
12

∫ 2

0

t4 dt =
4
3

[
1
5

t5
]2

0

=
128
15

.
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Example 4.10 Given the vector field

V(x, y, z) =
(
4x + 3y3, 9xy2 + z, y

)
, (x, y, z) ∈ R

3.

1) Find div V and rot V.

2) Show that V is a gradient field and find all its integrals.

3) Compute the tangential line integral∫
K

V · t ds =
∫
K
(4x + 3y3) dx + (9xy2 + z) dy + y dz,

where K denotes the line segment from the point (0, 0, 0) to the point (1, 1, 1).

4) Find the flux of V through the unit sphere x2 + y2 + z2 = 1 with a normal vector pointing away
from the ball.

A Vector analysis.

D Follow the guidelines

I 1) We get by direct computations

div V = 4 + 18xy2,

and

rot V =

∣∣∣∣∣∣∣∣∣∣∣

e1 e2 e3

∂

∂x

∂

∂y

∂

∂z

4x + 3y3 9xy2 + z y

∣∣∣∣∣∣∣∣∣∣∣
=
(
1 − 1, 0 − 0, 9y2 − 9y2

)
= (0, 0, 0),

and we note that V is rotation free.

2) Since the field is rotation free and the domain is simply connected, we conclude that V is a
gradient field. Then by calculating the differential form,

V · (dx, dy, dz) = (4x + 3y3) dx + (9xy2 + z) dy + y dz

= 4x dx + 3
(
y3 dx + x · 3y2 dy

)
+ (z dy + y dz)

= d
(
2x2 + 3xy3 + yx

)
,

and it follows once more that V is a gradient field with all its integrals given by

F (x, y, z) = 2x2 + 3xy3 + yz + C, C ∈ R.

3) We have proved that V is a gradient field with an integral F . Then it follows that∫
K

V · t ds =
∫
K
(4x+3y3)dx+(9xy2+z)dy+y dz

= [F (x, y, z)](1,1,1)
(0,0,0) =

[
2x2 + 3xy3 + yz

](1,1,1)

(0,0,0)
= 2 + 3 + 1 = 6.
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4) An application of Gauß’s theorem gives∫
∂Ω

V · n dS =
∫

Ω

div V dΩ =
∫

Ω

(4 + 18xy2) dΩ = 4vol(Ω) + 0 = 4 · 4π
3

=
16π
3

,

because
∫
Ω

18xy2 dΩ = 0 of symmetric reasons. The integrand is odd in x, and the body is
symmetric with respect to the (Y,Z)-plane.

Example 4.11 A body of revolution L with the Z-axis as axis of rotation is given in semi polar
coordinates (�, ϕ, z) given by the inequalities

0 ≤ ϕ ≤ 2π, −a ≤ z ≤ a, 0 ≤ � ≤ a − z2

a
,

where a ∈ R+ is some given constant.

1. Compute the space integral

I =
∫

L

z2 dΩ.

Given the vector field

V(x, y, z) =
(
cos x, y sin x, z3

)
, (x, y, z) ∈ R

3.

2. Find the flux∫
∂L

V · n dS,

where the unit normal vector n is pointing away from the body.

A Space integral and flux in semi polar coordinates.

D Slice up the body; apply Gauß’s theorem.

–1

–0.5

0

0.5

1

0.2 0.4 0.6 0.8 1

Figure 21: The meridian curve when a = 1.
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I 1) It follows from the rearrangement

� = a

{
1 −

(z

a

)2
}

that the meridian curve is an arc of a parabola.

The space integral is computed by the method of slicing,

I =
∫

L

z2 dΩ = π

∫ a

−a

(
a − z2

a

)2

z2 dz = 2π
∫ a

0

(
a2 − 2z2 +

z4

a2

)
z2 dz

= 2π
∫ a

0

{
a2z2 − 2z4 +

z6

a2

}
dz = 2π

[
a2

3
z3 − 2

5
z5 +

z7

7a2

]a

0

= 2πa5

(
1
3
− 2

5
+

1
7

)
=

2πa5

105
(35 − 42 + 15) =

16πa5

105
.

2) The flux is according to Gauß’s theorem given by∫
∂L

V · n dS =
∫

Ω

div V dΩ =
∫

Ω

{− sin x + sinx + sz2
}

dΩ

= 3
∫

Ω

z2 dΩ = 3I =
16πa5

35
,

where we have used the result of 1).

 Gauβ’s theorem
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Example 4.12 Given the vector field

V(x, y, z) = (3xz2 − x3, 3yz2 − y3, 3z(x2 + y2)), (x, y, z) ∈ R
3,

and the constant a ∈ R+.

1. Show that V is a gradient field and find all its integrals.

Let K be the curve which is composed of the quarter circle of centrum at (0, 0, 0) and runs from (a, 0, 0)
to (0, a, 0), and the line segment from (0, a, 0) to (0, a, 2a).

2. Find the tangential line integral∫
K

V · t ds.

3. Find the flux of V through the surface of the ball of centrum (0, 0, 0) and radius a.

A Vector analysis.

D Each question can be answered in several ways. We shall here demonstrate some of the variants.

I 1) First note that V is of class C∞.

First variant. Prove directly by some manipulation that the differential form V · dx can be
written as dF where F then by the definition is an integral. Do this by pairing terms which
are similar to each other.

V · dx = (3xz2 − x3)dx + (3yz2 − y3)dy + 3z(x2 + y2)dz

=
3
2

z2d(x2) − 1
4

d(x4) +
3
2

z2d(y2) − 1
4

d(y4) +
3
2
(x2 + y2)d(z2)

= d

(
3
2

(x2 + y2)z2 − 1
4

x4 − 1
4

y4

)
.

It follows immediately from this that V is a gradient field and that all integrals are given
by

F (x, y, z) =
3
2

(x2 + y2)z2 − 1
4

x4 − 1
4

y4 + C,

where C is an arbitrary constant.
Second variant. Clearly, R

3 is simply connected. Furthermore,

∂L

∂y
= 0,

∂M

∂x
= 0, s̊a

∂L

∂y
=

∂M

∂x
,

∂L

∂z
= 6xz,

∂N

∂x
= 6xz, s̊a

∂L

∂z
=

∂N

∂x
,

∂M

∂z
= 6yz,

∂N

∂y
= 6yz, s̊a

∂M

∂z
=

∂N

∂y
.

Since all the “mixed derivatives” are equal, it follows that V · dx is closed and thus exact.
This means that V is a gradient field and the integrals of V exist.

In this variant we shall find the integrals by using line integrals. There are two subvarants:
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a) Integration along the broken line

(0, 0, 0) −→ (x, 0, 0) −→ (x, y, 0) −→ (x, y, z).

In this case,

F0(x, y, z) =
∫ x

0

(−t3)dt +
∫ y

0

(−t3) +
∫ z

0

3t(x2 + y2)dt

=
3
2

(x2 + y2)z2 − 1
4

(x4 + y4).

The integrals are

F (x, y, z) =
3
2

(x2 + y2)z2 − 1
4
(x4 + y4) + C,

where C is an arbitrary constant.
b) Radial integration along (0, 0, 0) −→ (x, y, z).

The coordinates of V are homogeneous of degree 3. Hence,

F0(x, y, z) = (x, y, z) ·
(

(3xz2−x3)
∫ 1

0

t3dt, (3yz2−y3)
∫ 1

0

t3dt, 3z(x2+y2)
∫ 1

0

t3dt

)

=
1
4

(x, y, z) · (3xz2 − x3, 3yz2 − y3, 3z(x2 + y2))

=
1
4
{
3x2z2 − x4 + 3y2z2 − y4 + 3z2(x2 + y2)

}
=

3
2

(x2 + y2)z2 − 1
4

(x4 + y4).

The integrals are

F (x, y, z) =
3
2

(x2 + y2)z2 − 1
4

(x4 + y4) + C,

where C is an arbitrary constant.
Third variant. Start by one of the variants 2a) and 2b) above without proving in advance

that V is a gradient field. The possible candidates of the integrals are

F (x, y, z) =
3
2

(x2 + y2)z2 − 1
4

(x4 + y4) + C.

Check these!:

�F (x, y, z) = (3xz2 − x3, 3yz2 − y3, 3z(x2 + y2)) = V(x, y, z).

This shows that V is a gradient field and its integrals are given by

F (x, y, z) =
3
2

(x2 + y2)z2 − 1
4

(x4 + y4) + C,

where C is an arbitrary constant.
Fourth variant. Improper integration.

First put

ω = V · dx = (3xz2 − x3)dx + (3yz2 − y3)dy + 3z(x2 + y2)dz.
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By an improper integration of the first term on the right hand side we get

F1(x, y, z) =
∫ x

(3tz2 − t3)dt =
3
2

x2z2 − 1
4

x4.

The differential is

dF1 = (3xz2 − x3)dx + 3x2z dz,

hence

ω − dF1 = (3yz2 − y3)dy + 3zy2 dz,

which neither contains x nor dx.

When we repeat this procedure on ω − dF1 we get

F2(y, z) =
∫ y

(3tz2 − t3)dt =
3
2

y2z2 − 1
4

y4

with the differential

dF2 = (3yz2 − y3)dy + 3zy2dz = ω − dF1.

Then by a rearrangement,

ω = V · dx = dF1 + dF2 = d

(
3
2

x2z2 − 1
4

x4 +
3
2

y2z2 − 1
4

y4

)
,

proving that V is a gradient field with the integrals

F (x, y, z) =
3
2

(x2 + y2)z2 − 1
4

(x4 + y4) + C,

C being an arbitrary constant.
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Figure 22: The curve K for a = 1.

2) Here we have two variants.
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First variant. Since V is a gradient field with the integral

F0(x, y, z) =
3
2

(x2 + y2)z2 − 1
4

(x4 + y4),

and K is a connected curve, we have∫
K

V · t ds = F0(0, a, 2a) − F0(a, 0, 0)

=
3
2

(02 + a2) · 4a2 − 1
4

(04 + a4) +
1
4

(a4 + 04) = 6a4.

Second variant. The definition of a tangential line integral.
The curve K is composed of the two subcurves

K1 : (x(t), y(t), z(t)) = a(cos t, sin t, 0), t ∈
[
0,

π

2

]
,

K2 : (x(t), y(t), z(t)) = a(0, 1, t), t ∈ [0, 2].

 Gauβ’s theorem
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First calculate∫
K1

V · t ds =
∫ π

2

0

a3
(− cos3 t,− sin3 t, 0

) · a(− sin t, cos t, 0) dt

= a4

∫ π
2

0

{
cos3 t · sin t − sin3 t · cos t

}
dt

=
a4

4
[− cos4 t − sin4 t

]π
2

0
=

a4

4
{−1 + 1} = 0,

and∫
K2

V · t ds =
∫ 2

0

a3
(
0, 3t2 − 1, 3t

(
02 + 12

)) · a(0, 0, 1) dt

= a4

∫ 2

0

3t dt =
3
2

a4 · 4 = 6a4.

Summarizing we get∫
K

V · t ds =
∫
K1

V · t ds +
∫
K2

V · t ds = 0 + 6a4 = 6a4.

3) This problem can also be solved in various ways.

First variant. According to Gauß’s theorem,

flux =
∫

K(0;a)

div V dΩ =
∫

K(0;a)

6z2 dΩ,

because

div V = 3z2 − 3x2 + 3z2 − 3y2 + 3(x2 + y2) = 6z2.

The computation of this integral is most probably performed in one of the following sub-
variants, although there exist some other (and more difficult) ways of calculation.
a) Partition of K(0; a) into slices parallel to the XY -plane.

By using this slicing method we get

flux =
∫

K(0;a)

6z2 dΩ =
∫ a

−a

{∫
K((0,0);

√
a2−z2)

6z2 dx dy

}
dz

=
∫ a

−a

6z2 area(K(0, 0);
√

a2 − z2) dz =
∫ a

−a

6z2π(a2 − z2) dz

= 12π
∫ a

0

(a2z2 − z4) dz = 12π
[
1
3

a2z3 − 1
5

z5

]a

0

= 12πa5 · 2
15

=
8π
5

a5.

b) Computation in spherical coordinates:

flux =
∫

K(0;a)

6z2 dΩ =
∫ 2π

0

{∫ π

0

(∫ a

0

6r2 cos2 θ · r2 sin sin θ dr

)
dθ

}
dϕ

= 2π
∫ π

0

6 cos2 θ · sin θ dθ ·
∫ a

0

r4 dr = 2π
[
2(− cos3 θ)

]π
0
· a5

5

=
4π
5

a5(1 + 1) =
8π
5

a5.
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Second variant. Direct application of the definition.
Put F = ∂K(0; a). Then the unit normal vector field on F is given by

n =
1
a

(x, y, z).

By insertion into the definition,

flux =
∫
F

V · n dS =
1
a

∫
K

{
3x2z2 − x4 + 3y2z2 − y4 + 3z2(x2 + y2)

}
dS

=
1
a

∫
F
{6z2(x2 + y2) − x4 − y4} dS.

We shall in the following compute this surface integral in two different ways. Notice that
there are many other possibilities. In both of these two subvariants we shall need the
following:

Calculations:∫ 2π

0

(
cos4 ϕ + sin4 ϕ

)
dϕ(4)

=
∫ 2π

0

(
cos4 ϕ+sin4 ϕ+2 sin2 ϕ cos2 ϕ−2 sin2 ϕ cos2 ϕ

)
dϕ

=
∫ 2π

0

{(
cos2 ϕ + sin2 ϕ

)2 − 1
2

sin2 2ϕ
}

dϕ

=
∫ 2π

0

{
1 − 1

2
· 1
2

(1 − cos 4ϕ)
}

dϕ =
3
4
· 2π =

3π
2

.
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Figure 23: The meridian curve M.

a) Consider the surface F as a surface of revolution with the meridian curve

M : �(z) =
√

a2 − z2, z ∈ [−a, a],

thus

x(z) =
√

a2 − z2 cos ϕ, y =
√

a2 − z2 sin ϕ, z = z,

and the weight function

√
{�′(z)}2 + 1 =

√
1 +

z2

a2 − z2
=

√
a2

a2 − z2
=

a√
a2 − z2

.
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By insertion into a suitable formula we get

flux =
1
a

∫
F

{
6z2

(
x2 + y2

)− x4 − y4
}

dS

=
1
a

∫ a

−a

{∫ 2π

0

{6z2([a2 − z2] cos2 ϕ + [a2 − z2] sin2 ϕ)

−(a2−z2)2(cos4 ϕ+sin4 ϕ)}dϕ
} √

a2 − z2 · a√
a2 − z2

dz

=
∫ a

−a

{∫ 2π

0

{6z2(a2−z2)−(a2−z2)2(cos4 ϕ+sin4 ϕ)}dϕ

}
dz

=
∫ a

−a

{
2π · 6z2(a2−z2)− 3π

2
(a2−z2)2

}
dz (ved (4))

= 12π
∫ a

−a

(a2z2−z4) dz− 3π
2

∫ a

−a

(a4−2a2z2+z4) dz

= 2 · 12π
[
a2

3
z3− 1

5
z5

]a

0

−2 · 3π
2

[
a4z− 2

3
a2z3+

1
5

z5

]a

0

= 24πa5 · 2
15

− 3πa5

(
1 − 2

3
+

1
5

)
= πa5 ·

(
16
5

− 1 − 3
5

)
=

8πa5

5
.

b) Alternatively it follows by the symmetry that the flux through

F+ = {(x, y, z) ∈ F | z ≥ 0}

is equal to the flux through F \ F+, thus

flux =
2
a

∫
F+

{6z2(x2 + y2) − x4 − y4} dS.

The surface F+ is the graph of

z =
√

a2 − x2 − y2, (x, y) ∈ B = {(x, y) | x2 + y2 ≤ a2},

and the normal vector is

N(x, y) =
(
−∂z

∂x
,−∂z

∂y
, 1
)

=

(
x√

a2 − x2 − y2
,

y√
a2 − x2 − y2

, 1

)
,

hence

‖N(x, y)‖ =
a√

a2 − x2 − y2
.

Then by
i) reduction of the surface integral to a plane integral,
ii) reduction in polar coordinates,
iii) application of the calculation (4),
iv) the change of variable t =

√
a2 − r2, i.e.

r2 = a2 − t2 og dt = − r√
a2 − r2

dr,
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we finally get

flux =
2
a

∫
B

{6(a2−x2−y2)(x2+y2)−x4−y4} a√
a2−x2−y2

dx dy

= 2
∫ 2π

0

{∫ a

0

{6(a2−r2)r2−r4(cos4 ϕ+sin4 ϕ)} r√
a2−r2

dr

}
dϕ

= 2
∫ a

0

{
12π(a2−r2)r2− 3π

2
r4

}
r√

a2−r2
dr (by (4))

= π

∫ a

0

{
24t2(a2−t2)−3(a2−t2)2

}
dt

= π

∫ a

0

{
24a2t2−24t4−3a4+6a2t2−3t4

}
dt

= πa5

{
8 − 24

5
− 3 + 2 − 3

5

}
= πa5

{
7 − 27

5

}

= πa5 · 35 − 27
5

=
8πa5

5
.
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Example 4.13 Let a be a positive constant. Consider the set

A = {(x, y, z) ∈ R
3 | x2 + y2 ≤ a2, 0 ≤ y, −y ≤ x ≤ y, |z| ≤ 2a}.

1) Describe A in semi polar coordinates (�, ϕ, z).

2) Compute the space integrals

I =
∫

A

x dΩ, J =
∫

A

y dΩ, K =
∫

A

z2 dΩ.

3) Find the flux of the vector field

V(x, y, z) =
(
3xz2+cosh y, z2ex, z3−3axz+sinh y

)
, (x, y, z) ∈ R

3,

through the surface ∂A with its normal vector pointing outwards.

A Space integrals; flux.

D The first two problems are solved by the reduction theorems. In 3) we apply Gauß’s theorem.

0

0.2

0.4

0.6

0.8

1

–1 –0.5 0.5 1

Figure 24: The domain B for a = 1 lies inside the upper angular space and inside the half circle.

I 1) Clearly, A is a cylinder with a quarter disc B in the (X,Y )-plane as generating surface. Thus
A is described in semi polar coordinates by

A =
{

(�, ϕ, z)
∣∣∣∣ 0 ≤ � ≤ a,

π

4
≤ ϕ ≤ 3π

4
, −2a ≤ z ≤ 2a

}
.

2) By an argument of symmetry (first integrate with respect to x) we get

I =
∫

A

x dΩ = 0.

Alternatively,

I =
∫

A

x dΩ =
∫ 2a

−2a

{∫ a

0

(∫ 3π
4

π
4

� cos ϕ · � dϕ

)
d�

}
dz

= 4a
∫ a

0

�2d� ·
∫ 3π

4

π
4

cos ϕdϕ = 4a · a3

3
[sinϕ]

3π
4

π
4

= 0.
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Furthermore,

J =
∫

A

y dΩ =
∫ 2a

−2a

{∫ a

0

(∫ 3π
4

π
4

� sin ϕ · � dϕ

)
d�

}
dz

= 4a · a3

3
[− cos ϕ]

3π
4

π
4

=
4a4

3
·
{

1√
2

+
1√
2

}
=

4
√

2a4

3
.

Finally, by the slicing method,

K =
∫

A

z2 dΩ =
∫ 2a

−2a

z2 areal(B) dz =
1
4
· πa2

[
z3

3

]2a

−2a

=
1
4

πa2 · 2 · 8a3

3
=

4πa5

3
.

3) By an application of Gauß’s theorem,

flux =
∫

A

div V dΩ =
∫

A

{
3z2 + 0 + 3z2 − 3az

}
dΩ = 6K − 3aI = 8πa5,

where we have inserted the values of K and I found in 2).

Example 4.14 Consider the function

F (x, y, z) = x4 + x ey sin z, (x, y, z) ∈ R
3,

and the vector field V = �F .

1) Find the divergence � · V and the rotation �× V.

2) Check if V has a vector potential.

3) Find the flux of V through ∂A, where A is the half ball given by the inequalities

x2 + y2 + z2 ≤ 9, z ≤ 0.

4) Find the flux of V through the surface F given by

x2 + y2 + z2 = 9, z ≤ 0.

Show the orientation of F on a figure. (Hint: Use that the surface F is a subset of the surface ∂A
of 3).

A Divergence, rotation, flux.

D Find V. Use the rules of calculations and finally also Gauß’s theorem.

I 1) First compute

V = �F =
(
4x3 + ey sin z, xey sin z, xey cos z

)
.

Then

� · V = � · �F = ΔF = 12x2 + xey sin z − xey sin z = 12x2

and

�× V = �×�F = 0,

which is obvious because V is a gradient field and thence rotation free.
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Figure 25: The body A.

2) Since V is not divergence free in any open domain, V does not have a vector potential.

3) We get by Gauß’s theorem, an argument of symmetry and using spherical coordinates,

flux(∂A) =
∫

∂A

V · n dS =
∫

A

� · V dΩ = 12
∫

A

x2 dΩ = 12
∫

A

y2 dΩ = 6
∫

A

(x2 + y2) dΩ

= 6
∫ 2π

0

{∫ π

π
2

(∫ 3

0

r2 sin2 θ · r2 sin θ dr

)
dθ

}
dϕ

= 6 · 2π
∫ π

π
2

(
1 − cos2 θ

)
sin θ dθ ·

∫ 3

0

r4 dr

=
12π
5

· 35 ·
[
− cos θ +

1
3

cos3 θ

]π

π
2

=
12π
5

· 35 · 2
3

=
1944π

5
.

4) Let G denote the disc in the (X,Y )-plane with the unit normal vector field pointing upwards,
and let F denote the half sphere with the unit normal vector field pointing downward. Then
according to 3),

flux(∂A) = flux(F) + flux(G) =
1944π

5
.

Since n = (0, 0, 1) on G, it follows by a rearrangement that

flux(F) =
1944π

5
− flux(G) =

1944π
5

−
∫
G

[xey cos z]z=0 dS =
1944π

5
−
∫
G

xey dS

=
1944π

5
−
∫ 3

−3

ey

{∫ √
9−y2

−
√

9−y2
x dx

}
dy =

1944π
5

− 0 =
1944π

5
,

where we for symmetric reasons compute the plane integral over the disc in rectangular coor-
dinates.
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Example 4.15 The set Ω ⊂ R
3 is given in semi polar coordinates (�, ϕ, z) by the inequalities

−π

2
≤ ϕ ≤ π

2
, 0 ≤ z ≤ h, 0 ≤ � ≤ a

(
1 − z

h

)
,

where a and h are positive constants.
Also given the vector field

U(x, y, z) =
(
x3z + 2y cos x, y3z + y2 sin x, x2y2

)
, (x, y, z) ∈ R

3.

1) Find the divergence � · U.

2) Find the flux Φ of the vector field U through the surface ∂Ω.

A Vector field, flux.

D Sketch a figure. Apply Gauß’s theorem.
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Figure 26: The body Ω for a = 2 and h = 1.
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Figure 27: The meridian cut of Ω for ϕ ∈
[
−π

2
,
π

2

]
and a = 2, h = 1.
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I We see that Ω is (half of) a cone (of revolution) with the top point (0, 0, h) and a half disc in the
(X,Y )-plane as its basis.

1) The divergence is

div U = � · U = (3x2z − 2y sin x) + (3y2z + 2y sinx) + 0 = 3z(x2 + y2).

2) By applying Gauß’s theorem and reducing in semi polar coordinates we conclude that the flux
is

Φ =
∫

Ω

div U dΩ =
∫

Ω

3z(x2 + y2) dΩ =
∫ h

0

{∫ π
2

−π
2

(∫ a(1− z
h )

0

3z�2 · � d�

)
dϕ

}
dz

= 3π
∫ h

0

z

(∫ a(1− z
h )

0

�3 �

)
dz = 3π · 1

120
a4 h2 =

π

40
a4 h2.
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An alternative computation is

Φ =
∫ h

0

π · 3z · 1
4

a4
(
1 − z

h

)4

dz =
3π
4

a4 h

∫ h

0

{
1 −

(
1 − z

h

)}(
1 − z

h

)4

dz

=
3π
4

a4 h

∫ h

0

{(
1 − z

h

)4

−
(
1 − z

h

)5
}

dz =
3π
4

a4 h2

∫ 1

0

{
ζ4 − ζ5

}
dζ

=
3π
4

a4 h2 ·
(

1
5
− 1

6

)
=

π

40
a4 h2.

Example 4.16 Find the divergence and the rotation of the vector field

V(x, y, z) =
(

2x + xy, 7x − 1
2

y2, 3z
)

, (x, y, z) ∈ R
3,

and find the flux of V through the unit sphere x2 + y2 + z2 = 1, where the normal vector is pointing
outwards.

A Divergence, rotation and flux).

D Apply Gauß’s theorem.

I The divergence is

div V = 2 + y − y + 3 = 5.

The rotation is

rot V =

∣∣∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

2x + xy 7x − 1
2

y2 3z

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

xy 7x 0

∣∣∣∣∣∣∣∣∣∣∣
= (0, 0, 7 − x).

By Gauß’s theorem the flux through the surface F of the unit sphere is given by∫
F

V · n dS =
∫

Ω

div V dΩ =
∫

Ω

5 dΩ = 5vol(Ω) = 5 · 4π
4

· 13 =
20π
3

.
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Example 4.17 .

1) Find the volume of the body of revolution

A =
{

(x, y, z) ∈ R
3

∣∣∣∣ 1
2

x2 +
1
2

y2 − 1 ≤ z ≤ 1
}

.

2) Find the flux of the vector field

V(x, y, z) =
(
y2 + x, xz2 − yx2, x2z

)
, (x, y, z) ∈ R

3,

through ∂A, where the unit normal vector is always pointing away from the body.

A Volume and flux.

D Sketch a section of A in the meridian half plane. Apply the method of slicing by finding the volume.
The flux is found by means of Gauß’s theorem.

–1

–0.5

0

0.5

1

y

0.5 1 1.5 2

x

Figure 28: The meridian cut for A. The boundary curve has the equation z =
1
2

�2 − 1.

I 1) It follows from the sketch of the meridian half plane that the domain is described in semi polar
coordinates by

0 ≤ � ≤ √
2z + 2, −1 ≤ z ≤ 1,

and that the body of revolution is a subset of a paraboloid of revolution.

The slicing method. The paraboloid of revolution is intersected by a plane at the height
z ∈ ] − 1, 1] (the dotted line on the figure) in a circle of area

π · �(z)2 = 2π(z + 1).

Thus the volume of the body of revolution is

vol(A) =
∫ 1

−1

2π(z + 1) dz =
[
π(z + 1)2

]1
−1

= 4π.

2) According to Gauss’s theorem, the flux of V through ∂A is given by∫
∂A

V · n dS =
∫

A

div V dΩ =
∫

A

{
1 − x2 + x2

}
dΩ = vol(A) = 4π.
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5 Stokes’s theorem

Example 5.1 Apply in each of the following cases Stokes’s theorem to find the circulation of the
given vector field V : R

3 → R
3 along the given closed curve K, we one shall indicate the direction of

the curve on a figure.

1) The circulation of the vector field

V(x, y, z) = (y sinh(xy) + z2, x sinh(xy) + z2 + x, 2x2 + 2y2)

along the closed curve K given by x2 + y2 = 1, z = 1.

2) The circulation of the vector field

V(x, y, z) = (y2 + z4, (x − a)2 + z4, x2 + y2)

along the closed curve K given by

x2 + y2 = bx, z4 = a2 − x2 − y2, where b < a and z > 0.

3) The circulation of the vector field

V(x, y, z) = (y, x − yz, x2)

along the closed curve K given by

x2 + y2 = 1, z = 4 − 2x2 − y2.

4) The circulation of the vector field

V(x, y, z) = (yz − 2y, xz + 4x, xy)

along the closed curve K given by

� = 1 + cosϕ, z =
√

4 − �2 for ϕ ∈ [−π, π].

5) The circulation of the vector field

V(x, y, z) = (y2 − 2xy, 2xy, 2az + 3a2)

along the closed curve K given by

x2 + y2 = ax z = a −
√

x2 + y2.

6) The circulation of the vector field V(x, y, z) = (z, x, y) along the boundary of the triangle K of
vertices (0, 0, 1), (0, 1, 0) and (1, 0, 0).

7) The circulation of the vector field V(x, y, z) = (y, z, x) along the closed curve K given by

x2 + y2 + z2 = a2, z = y − x.

8) The circulation of the vector field V(x, y, z) = (y + sin z, x, x cos z) along the closed curve K given
by

x2 + y2 + z2 = 1, z = x.

 Stokes’s theorem
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Figure 29: The curve K of Example 5.1.1.

9) The circulation of the vector field V(x, y, z) = (z2, ax + z2, 2x2 + 2y2) along the closed curve K
given by

x2 + y2 = a2, z = a.

10) The circulation of the vector field

V(x, y, z) = (−y(x2 + 2z2), x(x2 + 4y2 + 2z2), z3)

along the closed curve K given by

x2 + y2 = a2, z = a.

A Circulation of vector fields.

D Sketch the curve and choose a direction of it. Compute rot V, and choose the surface F . Finally,
apply Stokes’s theorem.

I 1) The most obvious choice of the surface is

F = {(x, y, 1) | x2 + y2 ≤ 1}
where the orientation is given by the normal vector n = (0, 0, 1). Hence

n · rot V =
∂Vy

∂x
− ∂Vx

∂y
= sinh(xy) + xy cosh(xy) + 1 − sinh(xy) − xy cosh(xy) = 1.

According to Stokes’s theorem the circulation is then∫
K

V · t ds =
∫
F

n · rot V dS = 1 · area(F) = π.

2) If we choose the orientation of K, such that the projection of the curve onto the XY -plane has
a positive direction, it is quite natural to choose the corresponding surface

F =
{

(x, y, 4
√

z2 − x2 − y2) | x2 + y2 ≤ bx
}

,

 Stokes’s theorem
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Figure 30: The curve K of Example 5.1.2 for a = 4 and b = 2.

with the normal vector n · ez > 0. We first find

rot V =

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

y2 + z4 (x − a)2 + z4 x2 + y2

∣∣∣∣∣∣∣∣∣∣∣
= (2y − 4z3, 4z3 − 2x, 2(x − a) − 2y).
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Figure 31: The curve K of Example 5.1.3

Then calculate the normal vector of the surface F ,

N(x, y) =

∣∣∣∣∣∣∣∣∣∣

ex ey ez

1 0 − 1
2 x( 4

√
a2 − x2 − y2)−3

0 1 − 1
2 y( 4

√
a2 − x2 − y2)−3

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

1 0 −1
2

x

z3

0 1 −1
2

y

z3

∣∣∣∣∣∣∣∣∣∣∣∣
=

(
1
2

x

z3
,

1
2

y

z3
, 1

)
,

hence

n · rot V =
1

‖N(x, y)‖
{

1
2

x

z3
(2y−4z3)+

1
2

y

z3
(4z3−2x)+2(x−a)−2y

}

=
1

‖N(x, y)‖
{xy

z3
−2x+2y− yx

z3
+2x−2a−2y

}
= − 2a

‖N(x, y)‖ .

Choose the parameter domain

B = {(x, y) | x2 + y2 | bx}.

According to Stokes’s theorem the circulation of V along the curve K is given by∫
K

V · t ds =
∫
F

n · rot V dS =
∫

B

−2a
‖N(x, y)‖ ‖N(x, y)‖ dx dy

= −2a area(B) = −2a · π
(

b

2

)2

= −π

2
ab2.

3) Here we choose the surface

F = {(x, y, 2 − 2x2 − y2) | x2 + y2 ≤ 1},

where the boundary curve K is oriented such that it is positive in the XY -plane. Then n·ez > 0
for the normal vector on F .
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Figure 32: The curve K of Example 5.1.4

Then by computing,

rot V =

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

y x − yz x2

∣∣∣∣∣∣∣∣∣∣∣
= (y,−2x, 1 − 1) = (y,−2x, 0).

and

N(x, y) =

∣∣∣∣∣∣∣∣∣∣

ex ey ez

1 0 −4x

0 1 −2y

∣∣∣∣∣∣∣∣∣∣
= (4x, 2y, 1),

hence

n · rot V =
1

‖N(x, y)‖ (2x, 2y, 1) · (y,−2x, 0) = 0.

Then it is easy to find the circulation,∫
K

t · V ds =
∫
F

n · rot V dS = 0.

4) Choose the surface which is given in semi polar coordinates by

F =
{

(�, ϕ,
√

4 − �2) | 0 ≤ � ≤ 1 + cos ϕ, ϕ ∈ [−π, π]
}

= {(�, ϕ,
√

4 − �2) | (�, ϕ) ∈ B},

where the parameter domain

B = {(�, ϕ) | 0 ≤ � ≤ 1 + cos ϕ, ϕ ∈ [−π, π]}
lies inside the cardioid.

 Stokes’s theorem
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Figure 33: The parameter domain B of Example 5.1.4.

Choose the orientation of K such that the projection of K onto the cardioid is run through in
the the positive sense of the plane. Then by a computation,

rot V =

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

yz − 2y xz + 4x xy

∣∣∣∣∣∣∣∣∣∣∣
= (x − x, y − y, z + 4 − z + 2) = (0, 0, 6).

The surface F is described in rectangular coordinates (though in polar parameters) by

(x, y, z) = (� cos ϕ, � sinϕ,
√

4 − �2).

This rectangular description is necessary when we compute the normal vector by the usual
method,

N(�, ϕ) =

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

cos ϕ sinϕ − �√
4 − �2

−� sinϕ � cos ϕ 0

∣∣∣∣∣∣∣∣∣∣∣
=

(
�2 cos ϕ√

4 − �2
,

�2 sin ϕ√
4 − �2

, �

)
,

thus

n · rot V =
6�

‖B(�, ϕ)‖ .

The circulation along K is∫
F

6�
‖N(�, ϕ)‖ dS =

∫
B

6� d� dϕ =
∫ π

−π

{∫ 1+cos ϕ

0

6� d�

}
dϕ

=
∫ π

−π

3(1 + cos ϕ)2dϕ = 3
∫ π

−π

(1 + 2 cos ϕ + cos2 ϕ) dϕ

= 3
∫ π

−π

{
1 + cos2 ϕ

}
dϕ + 0 =

3
2
· 3 · 2π = 9π.
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Figure 34: The curve K of Example 5.1.5 for a = 1.

5) Choose the surface

F = {(x, y, a −
√

x2 + y2) | x2 + y2 ≤ ax} = {(x, y, a −
√

x2 + y2) | (x, y) ∈ B},

where the parameter domain B is described in polar coordinates of the plane,

B =
{

(�, ϕ)
∣∣∣ � ≤ a cos ϕ, ϕ ∈

[
−π

2
,
π

2

]}
.
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Figure 35: The surface F of Example 5.1.6.

Then

rot V =

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

y2 − 2xy 2xy 2az + 3a2

∣∣∣∣∣∣∣∣∣∣∣
= (0, 0, 2y − 2y + 2x) = (0, 0, 2x),

and

N(x, y) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

1 0 − x√
x2 + y2

0 1 − y√
x2 + y2

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

(
x√

x2 + y2
,

y√
x2 + y2

, 1

)
.

The circulation af V along K is then by Stokes’s theorem,∫
K

t · V ds =
∫
F

n · V dS =
∫

B

N · V dx dy =
∫

B

2x dx dy

=
∫ π

2

−π
2

{∫ a cos ϕ

0

2� cos ϕ · � d�

}
dϕ =

∫ π
2

−π
2

[
2
3

�3

]a cos ϕ

0

cos ϕdϕ

=
∫ π

2

−π
2

2
3

a3 cos4 ϕdϕ =
2
3

a3

∫ π
2

−π
2

(
1 + cos 2ϕ

2

)2

dϕ

=
1
6

a3

∫ π
2

−π
2

(
1 + 2 cos 2ϕ +

1 + cos 4ϕ

2

)
dϕ =

1
6

a3 · 3
2

π =
π

4
a3.
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6) First calculate

rot V =

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

z x y

∣∣∣∣∣∣∣∣∣∣∣
= (1, 1, 1).

We choose naturally the surface F in the following way

F = {(x, y, 1 − x − y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 − x}
with the normal vector

N(x, y) =

∣∣∣∣∣∣
ex ey ez

1 0 −1
0 1 −1

∣∣∣∣∣∣ = (1, 1, 1).

The circulation of the vector field along K is then∫
K

t · V ds =
∫
F

n · rot V dS =
∫

B

N · rot V dx dy = 3area(B) =
3
2
.

7) Choose F as the plane surface (a disc)

F = {(x, y, y − x) | x2 + y2 + (y − x)2 ≤ a2}
with N · ez > by the chosen orientation. We get

rot V =

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

y z x

∣∣∣∣∣∣∣∣∣∣∣
= (−1,−1,−1)

and

N(x, y) =

∣∣∣∣∣∣
ex ey ez

1 0 −1
0 1 1

∣∣∣∣∣∣ = (1,−1, 1),

thus

N · rot V = (−1,−1,−1) · (1,−1, 1) = −1.

The projection B of F onto the XY -plane is given by

a2 ≥ x2 + y2 + (y − x)2 = x2 + y2 − 1
2

(x − y)2 +
3
2

(x − y)2 =
(

x + y√
2

)2

+ 3
(

x − y√
2

)2

,

which describes the interior of an elliptic disc with the directions of the axes(
1√
2
,

1√
2

)
and

(
1√
2
,− 1√

2

)
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Figure 36: The curve K of Example 5.1.8.
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Figure 37: The curve K of Example 5.1.9 and Example 5.1.10 for a = 1.

and the half axes a and
a√
3
.

The circulation is∫
K

t · V ds =
∫
F

n · rot V dS =
∫

B

N · rot V dx dy = − area(B) = −π · a2

√
3
.

8) Since

rotV =

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

y + sin z x x cos z

∣∣∣∣∣∣∣∣∣∣∣
= (0, cos z − cos z, 1 − 1) = (0, 0, 0),

the circulation is trivially 0 by Stokes’s theorem.
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9) Here

rot V =

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

z2 ax + z2 2x2 + 2y2

∣∣∣∣∣∣∣∣∣∣∣
= (4y − 2z, 2z − 4x, a).

We have n = (0, 0, 1) in the chosen orientation of K, so the circulation becomes∫
K

t · V ds =
∫
F

n · rot V dS =
∫

B

a dx dy = a · area(B) = πa3.

Alternatively it is here also easy to compute the circulation as a line integral. We choose
the parametric description

(x, y, z) = (a cos ϕ, a sin ϕ, a), ϕ ∈ [0, 2π],

for K. Then we get the tangent vector field

t ds = (−a sinϕ, a cos ϕ, 0)dϕ,
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hence∫
K

t · V ds =
∫ 2π

0

(−a sin ϕ, a cos ϕ, 0) · (a2, a2 cos ϕ + a2, 2a2) dϕ

= a3

∫ 2π

0

(− sin ϕ + cos2 ϕ + cos ϕ + 0) dϕ

= a3

∫ 2π

0

cos2 ϕdϕ = a3

∫ 2π

0

sin2 ϕdϕ

= a3

∫ 2π

0

cos2 ϕ + sin2 ϕ

2
dϕ =

a3

2

∫ 2π

0

dϕ = πa3.

10) The surface F is the same as in Example 5.1.9, so we can reuse n = N = (0, 0, 1) and

n · rot V =
∂Vy

∂x
− ∂Vx

∂y
= 3x2 + 4y2 + 2z2 + x2 + 2z2 = 4(x2 + y2 + z2).

Now z = a on F , so the circulation becomes∫
K

t · V ds =
∫
F

n · rot V dS = 4
∫

B

(x2 + y2 + a2) dx dy

= 4
∫ 2π

0

{∫ a

0

�2 · � d�

}
dϕ + 4a2 · πa2 = 2πa4 + 4πa4 = 6πa4.

Example 5.2 Apply in each of the following cases Stokes’s theorem to compute the flux∫
F

n · rot V dS

of the rotation of the given vector field V : R
3 → R

3 through the surface F , where we shall choose an
orientation, which is indicated on a figure.

1) The flux of V(x, y, z) = (y2, x − 2xz,−xy) through the surface F given by z =
√

a2 − x2 − y2 for
x2 + y2 ≤ a2.

2) The flux of V(x, y, z) = (2y3, x2 + yz, x) through the triangle F with the vertices (1, 0, 0), (0, 1, 0)
and (0, 0, 1).

3) The flux of V(x, y, z) = (y + z2, z ln(1 − x2 + y2),Arctan(xyz)) through the surface F given by
z = 1 − x2 − y2 for x2 + y2 ≤ 1.

A Flux computed by means of Stokes’s theorem.

D Sketch the surface F and the boundary curve K and choose an orientation. (It has not been
possible for me to sketch the orientation of the figures). Finally, exploit that the flux according to
Stokes’s theorem is given by

(5)
∫
F

(�×V) · b dS =
∫
K

V · t ds, where K = “∂F”.

 Stokes’s theorem
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Figure 38: The surface F of Example 5.2.1 for a =
√
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Figure 39: The surface F of Example 5.2.2

I 1) The boundary curve is the circle in the XY -plane of centrum (0, 0) and radius a. Choose the
parametric description

(x, y, z) = (a cos ϕ, a sin ϕ, 0), ϕ ∈ [0, 2π],

for K in R
3 corresponding to a positive orientation. Since t = (− sin ϕ, cos ϕ, 0) and ds = a dϕ,

the flux is according to (5) given by∫
K

V · t ds =
∫ 2π

0

(a2 sin2 ϕ, a cos ϕ,−a2 sin ϕ cos ϕ) · (− sin ϕ, cos ϕ, 0)a dϕ

=
∫ 2π

0

{−a3 sin3 ϕ + a2 cos2 ϕ + 0
}

dϕ = 0 + a2 · 1
2
· 2π + 0 = πa2.

2) The boundary curve is the boundary of the triangle with e.g. the parametric description⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

K1 : (x, y, z) = (1 − t, t, 0), t ∈ [0, 1],

K2 : (x, y, z) = (0, 1 − t, t), t ∈ [0, 1],

K3 : (x, y, z) = (t, 0, 1 − t), t ∈ [0, 1],

 Stokes’s theorem
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Figure 40: The surface F of Example 5.2.3.

where ds =
√

2 dt on each of the three subcurves. According to (5) the flux is given by∫
F

(�× V) · n dS =
∫
K1

V · t ds +
∫
K2

V · t ds +
∫
K3

V · t ds

=
∫ 1

0

(2t3, (1 − t)2, 1 − t) · (−1, 1, 0) dt

+
∫ 1

0

(2(1 − t)3, (1 − t)t, 0) · (0,−1, 1) dt

+
∫ 1

0

(0, t2, t) · (1, 0,−1) dt

=
∫ 2

0

{−2t3 + (1 − t)2} dt +
∫ 1

0

{−(1 − t)t} dt +
∫ 1

0

(−t) dt

=
∫ 1

0

{−2t3 + (1 − t)2+)1 − t2)2 − (1 − t) − t} dt

=
∫ 1

0

{−2t3 + 2(t − 1)2 − 1} dt =
[
−1

2
t4 +

2
3

(t − 1)3 − t

]1

0

= −1
2
− 1 +

2
3

=
2
3
− 3

2
= −5

6
.

3) The boundary curve K is the unit circle in the XY -plane. Choose the orientation corresponding
to the parametric description

(x, y, z) = (cos ϕ, sin ϕ, 0), ϕ ∈ [0, 2π],

for K. Then

t = (− sin ϕ, cos ϕ, 0) and ds = dϕ,

and the flux through F is then according to (5.2) given by∫
K

V · t ds =
∫ 2π

0

(sinϕ, 0, 0) · (− sin ϕ, cos ϕ, 0) dϕ = −
∫ 2π

0

sin2 ϕdϕ = −1
2
· 2π = −π.

 Stokes’s theorem
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Figure 41: The space curve K and its tangent at r
(π

4

)
.

Example 5.3 A space curve K is given by the parametric description

r(t) = (2 cos t, 2 sin t, 4 + 2 sin(2t)), t ∈ R.

1. Find a parametric description of the tangent of K at the point r
(π

4

)
.

2. Show that K lies on the surface F , given by the equation z = 4 + xy.

Let K1 be the restriction of K corresponding to the parameter interval [0, 2π], where this is run through
corresponding to increasing t. Furthermore, we have given the vector field

V(x, y, z) = (y, x, y2 + 2z), (x, y, z) ∈ R
3.

3. Find the circulation of the vector field along the curve K1.

A Space curve; circulation along a closed curve.

D Find r′(t) and the tangent corresponding to t =
π

4
.

Put (x, y, z) = r(t) into the equation of F .

Try to apply Stokes’s theorem. Alternatively, compute directly the circulation.

I 1) From

r′(t) = (−2 sin t, 2 cos t, 4 cos 2t)

follows that

r
(π

4

)
=
(

2√
2

,
2√
2

, 4 + 2
)

= (
√

2,
√

2, 6)

 Stokes’s theorem
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Figure 42: The surface F of equation z = 4 + xy for x2 + y2 ≤ 4

and

r′
(π

4

)
=
(
− 2√

2
,

2√
2

, 0
)

= (−
√

2,
√

2, 0),

hence the equation of the tangent is

(x, y, z) = (
√

2 −
√

2u,
√

2 +
√

2u, 6) = (
√

2(1 − u),
√

2(1 + u), 6), u ∈ R.

2) Since

4 + x(t)y(t) = 4 + 4 cos t · sin t = 4 + 2 sin 2t = z,

the curve K lies on the surface F .

3) It follows from Stokes’s theorem that∫
K

V · t ds =
∫
F

n · rot V dS,

where

rot V =

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

y x y2 + 2z

∣∣∣∣∣∣∣∣∣∣∣
= (2y,−1, 0).

Since z = 4 + xy, x2 + y2 ≤ 4, we get for the surface F that

∂z

∂x
= y and

∂z

∂y
= x,

 Stokes’s theorem
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thus

N(x, y) = (−y,−x, 1).

Alternatively, (x, y, z) = (u, v, 4 + uv), thus

N(u, v) =

∣∣∣∣∣∣
ex ey ez

1 0 v
0 1 u

∣∣∣∣∣∣ = (−v,−u, 1) = (−y,−x, 1).

If we put B =
{
(x, y) | x2 + y2 ≤ 4

}
, then∫

K
V · t ds =

∫
F

n · rot V dS =
∫

B

N · rot V dxdey

=
∫

B

(−2y2 + x + 0) dxdy = −2
∫ 2π

0

{∫ 2

0

(
�2 sin2 ϕ + 0

)
� d�

}
dϕ

= −2
[
2π
2

]
·
[
�4

4

]2

0

= −2π · 16
4

= −8π.

 Stokes’s theorem
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Alternatively a direct computation gives∫
K

V · t ds =
∫ 2π

0

V · r′(t) dt

=
∫ 2π

0

(2 sin t, 2 cos t, 4 sin2 t+8+4 sin 2t) · (−sin t, 2 cos t, 4 cos 2t)dt

=
∫ 2π

0

{−4 sin2 t+4 cos2 t+16 sin2 t cos 2t+32 cos 2t+16 sin 2t cos 2t}dt

= 16
∫ 2π

0

sin2 t cos 2t dt = 16
∫ 2π

0

sin2 t(2 cos2 t − 1)dt

= 8
∫ 2π

0

sin2 2t dt − 16π = 8 · 2π
2

− 16π = −8π.

Example 5.4 Let α be a constant, and consider the vector field

V(x, y, z) = (αx2+xz+yz, αy2−xz−yz, α(x2−y2+z2)), (x, y, z) ∈ R
3.

1. Find div V.

2. Show that V is not a gradient field in R
3 for any choice of α.

Let K denote the circle given by x2 + y2 = a2, z = a.

3. Find the circulation of V along K; indicate the chosen orientation.

Let the domain Ω ⊂ R
3 be given by x2 + y2 ≤ a2, y ≥ 0, 0 ≤ z ≤ a.

4. Find the flux of V through ∂Ω.

A Divergence, circulation and flux.

D Compute div V. Check
∂Vi

∂xj
for some i and j. Find the circulation, e.g. by Stokes’a theorem.

Finally, apply Gauß’s theorem to find the flux.

I 1) The divergence is

div V = 2αx + z + 2αy − z + 2αz = 2α(x + y + z).

2) It follows from

∂V1

∂y
= z and

∂V2

∂z
= −z,

that

∂V1

∂y
	= ∂V2

∂x
for z 	= 0.

The surface z = 0 does not contain inner points, thus V is not a gradient field for any value of
α.

 Stokes’s theorem
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Figure 43: The curve K and its projection onto the (X,Y )-plane for a = 1.

3) It follows by the definition of the circulation that∫
K

V · t ds

=
∫ 2π

0

(
αa2 cos2 t+a2 cos2 t+a2 sin t, αa2 sin2 t−a2 cos t−a2 sin t, αa2(cos2 t−sin2+a)

) ·
·(− sin t, cos t, 0) a dt

=a2

∫ 2π

0

{−α cos2 t sin t−cos t sin t−sin2 t+α sin2 t cos t−cos2 t−sin t cos t+0
}

dt

=a3

∫ 2π

0

(− sin2 t − cos2 t
)

dt = −2πa2.

Alternatively,

rot V · ez =

∣∣∣∣∣∣
∂

∂x

∂

∂y
xz + yz −xz − yz

∣∣∣∣∣∣ = −z − z = −2z.

Choose F as the disc x2 + y2 ≤ a2, z = a. Then we get by Stokes’s theorem that∮
K

V · t dS =
∫
F

rot V · ez dS =
∫
F

(−2a) dS = −2a area(F) = −2πa3.

4) When we apply Gauß’s theorem and 1), it follows that the flux is given by∫
∂Ω

V · n dS =
∫

Ω

div V dΩ = 2α
∫

Ω

(x + y + z) dΩ = 2α
∫

Ω

(y + z)dΩ

= 2αa

∫ a

−a

{∫ √
a2−x2

0

y dy

}
dx + 2α · πa2

2

∫ a

0

z dz

= αa · 2
∫ a

0

(a2 − x2) dx + απa2 · a2

2
= 2αa

(
a3 − 1

3
a3

)
+

1
2

απa4

=
4
3

αa4 +
1
2

απa4 = αa4

(
4
3

+
π

2

)
.
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Figure 44: The body Ω for a = 1.

Example 5.5 Consider the space curve K given by the parametric description

(x, y, z) =
(

1 + cos t, sin t, 2 sin
t

2

)
, t ∈ [0, 2π].

1. Find a parametric description of the tangent of K at the point corresponding to t =
π

2
.

2. Show that K lies on a sphere of centrum at (0, 0, 0), and find an equation of the sphere.

Furthermore, consider the surface F given by the parametric description

(x, y, z) =
(

1 + cos t, sin t, 2u sin
t

2

)
, (t, u) ∈ [0, 2π] × [0, 1],

and the vector field V(x, y, z) = (x, y, z), (x, y, z) ∈ R
3.

3. Find the area of F .

4. Find the circulation of the vector field along the curve K.

A Space curve, surface area, circulation of a vector field.

D 1) First calculate r′(t).

2) Show that x2 + y2 + z2 = r2 > 0 and find r > 0.

3) Compute the surface area.

4) Apply Stokes’s theorem. Alternatively the circulation is computed directly as a line integral.

I 1) We find

r′(t) =
(
− sin t, cos t, cos

t

2

)
, r′

(π

2

)
=
(
−1, 0,

1√
2

)
.

 Stokes’s theorem
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Figure 45: The curve K.

Now, r
(π

2

)
= (1, 1,

√
2), thus a parametric description of the tangent is given by

(1, 1,
√

2) + u

(
−1, 0,

1√
2

)
, u ∈ R.

 Stokes’s theorem
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2) Since

x(t)2 + y(t)2 + z(t)2 = (1 + cos t)2 + sin2 t + 4 sin2 t

2
= 1 + 2 cos t + cos2 t + sin2 t + 2(1 − cos t)
= 1 + 1 + 2 = 4 = 22,

it follows that K lies on the sphere of centrum (0, 0, 0) and radius 2.

0
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2

Figure 46: The surface F .

3) It follows from

∂r
∂t

=
(
− sin t, cos t, u cos

t

2

)
and

∂r
∂u

=
(

0, 0, 2 sin
t

2

)

that

N(t, u) =

∣∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

− sin t cos t u cos
t

2

0 0 2 sin
t

2

∣∣∣∣∣∣∣∣∣∣∣∣
= 2 sin

t

2
(cos t, sin t, 0),

thus

‖N(t, u)‖ =
∣∣∣∣2 sin

t

2

∣∣∣∣ · 1 = 2 sin
t

2
, t ∈ [0, 2π], u ∈ [0, 1].

Hence

area(F) =
∫ 1

0

{∫ 2π

0

2 sin
t

2
dt

}
=
[
−4 cos

t

2

]2π

0

= 4(1 + 1) = 8.

4) Since rot V = 0, it follows by Stokes’s theorem no matter how we choose the surface F1 with
boundary curve K that∮

K
V · t dt =

∫
F1

n · rot V dS = 0.

 Stokes’s theorem
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Alternatively we get by the definition that∮
K

V · t dt =
∫ 2π

0

V · r′(t) dt =
∫ 2π

0

r(t) · r′(t) dt

=
∫ 2π

0

d

dt

(
1
2
‖r(t)‖2

)
dt =

1
2
(‖r(2π)‖2 − ‖r(0)‖2

)
= 0,

because the curve is closed.

Alternatively it is possible though extremely tedious to insert the parametric description
and then reduce.

Example 5.6 Given the vector field

V(x, y, z) =
(
y3 − xz2,−x3 + yz2, z3

)
, (x, y, z) ∈ R

3.

1. Find the divergence � · V and the rotation �× V.

Let a be a positive constant, and let L denote the half spherical shell given by

z ≥ 0, a2 ≤ x2 + y2 + z2 ≤ 3a2.

2. Find the flux of V through ∂L.

Let C be the circle in the plane z = a of centrum (0, 0, a) and radius a.

3. Find the absolute value of the circulation
∮
C V · t ds.

4. Check if there exists a vector field W : R
3 → R

3, such that

V = �× W,

in the whole space.

5. Check if there exists a scalar field F : R
3 → R, such that V = �F in the whole space.

A Divergence, rotation, flux, circulation, vector potential, gradient field.

D Apply Gauß’s theorem and Stokes’s theorem, whenever it is possible.

I 1) We get by some very simple calculations that

div V = � · V = −z2 + z2 + 3z2 = 3z2,

and

�× V = rot V =

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

y3 − xz2 −x3 + yz2 z3

∣∣∣∣∣∣∣∣∣∣∣
= (−2yz,−2xz,−3zx2 − 3y2).

 Stokes’s theorem
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Figure 47: The meridian cut for a = 1 with the cut at height z.

2) It follows from Gauß’s theorem and the result of 1) that∫
∂L

V · n dS =
∫

L

div V dΩ =
∫

L

3z2 dΩ.

At height z ∈ [0, a] the body L is cut in an annulus of the area

π(3a2 − z2) − π(a2 − z2) = 2πa2.

At height z ∈ [a,
√

3 a] the body L is cut in a circle of area

π(3a2 − z2).

Hence by insertion,∫
∂L

V · n dS =
∫

L

3z2 dΩ =
∫ a

0

3z2 · 2πa2 dz +
∫ √

3a

a

3z2π(3a2 − z2) dz

= 6πa2

∫ a

0

z2 dz + 9πa2

∫ √
3a

a

z2 dz − 3π
∫ √

3a

a

z4 dz

= 9πa2

∫ √
3a

0

z2 dz − 3πa2

∫ a

0

z2 dz − 3π
∫ √

3a

a

z4 dz

= 3πa2 · 3
√

3 a3 − πa2 · a3 − 3
5

π(9
√

3 − 1)a

= πa5

(
9
√

3 − 1 − 27
5

√
3 +

3
5

)
=

π

5
(18

√
3 − 2)a5.

3) Put B = {(x, y) | x2 + y2 ≤ a2}. Then we get by Stokes’s theorem and the result of 1) that∣∣∣∣
∮
C
V · t ds

∣∣∣∣ =
∣∣∣∣
∫

B

rot V · n dx dy

∣∣∣∣ =
∣∣∣∣
∫

B

(−2ya,−2xa,−3x2 − 3y2
) · (0, 0, 1) dx dy

∣∣∣∣
= 3

∫
B

(x2 + y2) dx dy = 3 · 2π
∫ a

0

�2 · � d� = 6π · a4

4
=

3πa4

2
.

4) Since div V = 3z2 	= 0 for z 	= 0, there exists no vector potential W of V in all of the space.
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5) It follows from

∂V1

∂y
= 3y2 and

∂V2

∂x
= −3x2,

that

∂V1

∂y
	= ∂V2

∂x
for (x, y) 	= (0, 0),

thus V is not a gradient field, and there exists no integral F of V.

 Stokes’s theorem
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Example 5.7 Given the vector fields

U(x, y, z) = (z2 + y cos x, x2 + sinx, y2), V(x, y, z) = (y, z, x),

in the space R
3.

1) Find the divergence and the rotation of both vector fields.

2) Find the flux of U through the surface of the cube

{(x, y, z) ∈ R
3 | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1}.

3) Let a be a positive constant. Find the circulation of V along the circle in the (X,Z)-plane of
centrum at (a, 0, 2a) and radius a. Choose an orientation of the circle.

4) Find a vector potential for V.

A Vector analysis.

D Apply Gauß’s theorem and Stokes’s theorem.
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Figure 48: The circle of 3).

I 1) By simple calculations,

div U = −y sinx, div V = 0,

rot U =

∣∣∣∣∣∣∣∣∣∣∣

e1 e2 e3

∂

∂x

∂

∂y

∂

∂z

z2 + y cos x x2 + sinx y2

∣∣∣∣∣∣∣∣∣∣∣
= (2y, 2z, 2x) = 2V,

rot V =

∣∣∣∣∣∣∣∣∣∣∣

e1 e2 e3

∂

∂x

∂

∂y

∂

∂z

y z x

∣∣∣∣∣∣∣∣∣∣∣
= (−1,−1,−1).
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In particular, V = �×
(

1
2

U
)

, thus
1
2

U is a vector potential of V (cf. 4)).

2) According to Gauß’s theorem the flux of U through ∂T is given by∫
∂T

U · n dS =
∫

T

div U dΩ =
∫ 1

0

{∫ 1

0

{∫ 1

0

(−y sinx) dx

}
dy

}
dz

= 1 ·
[
y2

2

]1

0

· [cos x]10 = −1
2

(1 − cos 1).

3) According to Stokes’s theorem,∮
∂A

t · V ds =
∫

A

n · rotV dS =
∫

A

(0,−1, 0) · (−1,−1,−1) dS = area(A) = πa2.

4) According to the result of 1), the field
1
2

U is a vector potential of V.

Example 4.8 Let p ∈ R and b ∈ R+ be constants. consider the circle K given by x2 +y2 = b2, z = p;
the circle is run through in that direction which form a right hand turn with the Z-axis. Furthermore,
consider the vector field

W(x, y, z) =

(
yz√

x2 + y2
,

−xz√
x2 + y2

,
√

x2 + y2

)
, (x, y) 	= (0, 0).

Denote the circulation of W along the oriented circle K by C(b, p).

1) Show that C(b, p) = −2πpb.

2) Let V = rot W. Show that

V(x, y, z) =
1√

x2 + y2
(x + y, y − x,−z), (x, y) 	= (0, 0).

3) Show that W is not a gradient field.

4) Show that W has zero divergence.

5) Let O be the surface of revolution which is introduced in Calculus 2c-8, Example 1.13. Find the
flux∫

O
V · n dS,

where we must choose an orientation of O.

A Circulation, rotation, gradient field, divergence, flux.

D The circulation can be computed in various ways. The computation of the flux has also some
variants.

I 1) We have two variants.
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First variant. The definition of the circulation as a line integral.
We use the following parametric description of the circle K,

r(t) = (x, y, z) = (b · cos t, b · sin t, p), t ∈ [0, 2π].

Then

r′(t) = b (− sin t, cos t, 0),

and the circulation is according to the definition given by

C(b, p) =
∫
K

W · t ds =
∫ 2π

0

(
b sin t · p

b
,−b cos t · p

b
, b

)
· b (− sin t, cos t, 0) dt

= −pb

∫ 2π

0

{
sin2 t + cos2 t + 0

}
dt = −2πpb.

 Stokes’s theorem
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Second variant. Stokes’s theorem.
An application of Stokes’s theorem gives∫

K
W · t ds =

∫
F

rot W · n dS,

where F is the disc at height z = p and radius b, and where the unit normal vector is
parallel to the Z-axis.

The unit normal is trivially n = (0, 0, 1). then by 2),

rot W = V.

By applying the expression of V, we obtain in polar coordinates∫
K

W ·t ds =
∫
F

V ·n dS =
∫
F

(
− p√

x2 + y2

)
dS = −p

∫ 2π

0

{∫ b

0

1
�
· � d�

}
dϕ = −2πpb.

2) Let (x, y) 	= (0, 0). Then

V = rot W = �× W =

∣∣∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

yz√
x2 + y2

−xz√
x2 + y2

√
x2 + y2

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y√
x2 + y2

−
(
− x√

x2 + y2

)

y√
x2 + y2

− x√
x2 + y2

− z√
x2 + y2

+
x2z

(
√

x2 + y2)3
− z√

x2 + y2
+

y2z

(
√

x2 + y2)3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
1√

x2 + y2

⎛
⎜⎜⎜⎜⎜⎜⎝

y + x

y − x

−2z +
x2z + y2z

x2 + y2

⎞
⎟⎟⎟⎟⎟⎟⎠

=
1√

x2 + y2
(x + y, y − x,−z).

3) Suppose W was a gradient field, �F . Then

V = �× W = �×�F = 0.

But V 	= 0, thus we conclude that W is not a gradient field.
4) By just computing,

div W =
∂

∂x

(
yz√

x2 + y2

)
− ∂

∂y

(
xz√

x2 + y2

)
+

∂

∂z

(√
x2 + y2

)

= − xyz

(x2 + y2)3/2
−
(
− xyz

(x2 + y2)3/2

)
+ 0 = 0.

 Stokes’s theorem
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Alternatively it follows that if U is defined by

3U =
z2√

x2 + y2
(−x,−y, 0) +

√
x2 + y2 (−y.x.z), (x, y) 	= (0, 0),

then

W = rot U = �×U,

and thus

div W = � · (�× U) = 0.

–2

–1

0

1

–2

–1

1

2

–2

–1

1

2

Figure 49: The surface O. The upper boundary curve K1 is oriented as a left hand screw, while the
lower boundary curve K2 is oriented as a right hand screw. Hence the normal vector field on O is
everywhere pointing away from the Z-axis.

5) Choose the orientation on O as described in the caption of the figure. Then δO = K2 − K1,
where the minus sign in front of K1 means that this circle is run through in the opposite
direction of the usual one, i.e. as a left handed screw.

There are two variants.

1. variant. Stokes’s theorem combined with 1).

We get by Stokes’s theorem,∫
O

V · n dS =
∫
O

(�× W) · n dS =
∮

δO
W · t ds = −

∫
K1

W · t ds +
∫
K2

W · t ds

= −C(a, a) + C(2a,−2a) = +2πa · a + (+2π · 2a · 2a) = 10πa2.

Second variant. Surface integral.

The meridian curve has the equation

z = 2a − �2

a
,
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so we conclude that the tangent vector is
(

1,−2�
a

)
. Hence the normal vector N = (2�, a),

and thus the unit normal vector

n =
1√

a2 + 4�2
(2�, a).

Then the outgoing unit normal vector field of the surface O is

n(�, ϕ) =
1√

a2 + 4�2
(2� cos ϕ, 2� sin ϕ, a).

We have on O,

V =
1√

x2 + y2
(x + y, y − x,−z)

=
1
�

(
� cos ϕ + � sin ϕ, � sin ϕ − � cos ϕ,−2a +

�2

a

)

=
(

cos ϕ + sinϕ, sin ϕ − cos ϕ,
�

a
− 2

a

�

)
,

 Stokes’s theorem
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thence the integrand over O is written

f(x, y, z) = V · n =
1√

a2 + 4�2

{
2�

(
cos2 ϕ+cos ϕ sin ϕ+sin2 ϕ−cos ϕ sin ϕ

)
+�−2

a2

�

}

=
1√

a2 + 4�2

{
3� − 2

a2

�

}
.

Finally, by inserting into a known formula of the surface integral over surfaces of revolution,
we get∫

O
V · n dS =

∫ 2a

a

{∫ 2π

0

1√
a2 + 4�2

{
3� − 2

a2

�

}
dϕ

}
�

√
1 +

4�2

a2
d�

=
2π
a

∫ 2a

a

(
3�2 − 2a2

)
d� =

2π
a

[
�3 − 2a2�

]2a

a

=
2π
a

{
8a3 − 4a3 − a3 + 2a3

}
= 10πa2.

Example 5.9 Let F be one eighth of a sphere given by

x2 + y2 + z2 = a2, x ≥ 0, y ≥ 0, z ≥ 0,

where a is a positive constant. Thus the boundary curve δF is composed of three circular arcs.

Also, consider the vector field

V(x, y, z) = (ay + yz,−ax + zx, z2 − 2xy), (x, y, z) ∈ R
3.

1) Find the rotation �× V.

2) Show that V is not a gradient field.

3) Find the circulation∮
δF

V · t ds,

where we choose an orientation of δF .

A Rotation, circulation, Stokes’s theorem.

D Sketch a figure. Apply Stokes’s theorem.

I 1) The rotation is

rot V = �× V =

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

ay + yz −ax + zx z2 − 2xy

∣∣∣∣∣∣∣∣∣∣∣
= (−2x − x, y + 2y,−a + zaz) = (3x, 3y,−2a).

 Stokes’s theorem
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Figure 50: The surface F and the boundary curve δF for a = 1. On the surface F the unit normal
vector field is always directed away from (0, 0, 0), and the curve δF is oriented correspondingly, i.e.
from the X-axis towards the y-axis, then towards the z-axis and finally back to the x-axis.

2) It follows from rot V 	= 0 that V is not a gradient field.
3) Choose the orientation of δF as described on the figure. Then the unit normal vector field on

F is pointing outwards, i.e.

n =
1
a

(x, y, z), for (x, y, z) ∈ F .

Applying Stokes’s theorem we conclude that the circulation along δF is∮
δF

V · t ds =
∫
F

n · rot V dS =
∫
F

1
a

(x, y, z) · (−3x, 3y,−2a) dS

=
1
a

∫
F

(−3x2 + 3y2 − 2az) dS = −2
∫
F

z dS,

where if follows by the symmetry that∫
F

x2 dS =
∫
F

y2 dS.

The following computations can be given in various variants.
First variant. If we first (i.e. innermost) at height z and denote the circle by �, then∮

δF
V · t ds = −2

∫
F

z dS = −2
∫

�

z · π

2
·
√

a2 − z2 ds

= −π

∫
�

z
√

a2 − z2 ds

(
−π

∫
�

z� ds

)
.

Using the parametric description

� = a cos ϕ, z = a sin ϕ,

of � we get ds = a dϕ, and the computations continue as follows,∮
δF

V · t ds = −π

∫ π
2

0

a sin ϕ · a cos ϕ · a dϕ = −πa3

∫ π
2

0

sinϕ cos ϕdϕ

= −πa3

[
sin2 ϕ

2

]π
2

0

= −π

2
a3.
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Figure 51: The meridian cut of F for a = 1. We have at height z that � =
√

a2 − z2.

Second variant. The surface F is described in spherical coordinates by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x = a sin θ cos ϕ,

y = a sin θ sinϕ,

z = a cos θ,

⎧⎪⎪⎨
⎪⎪⎩

θ ∈
[
0,

π

2

]
,

ϕ ∈
[
0,

π

2

]
,

weight: a2 sin θ,

hence by insertion,∮
δF

V · t ds = −
∫
F

2z dS = −2
∫ π

2

0

{∫ π
2

0

a cos θ · a2 sin θ dθ

}
dϕ

= −2 · π

2
· a3

[
sin2 ϕ

2

]π
2

0

= −π

2
a3.

Third variant. Direct computation of the line integrals without the use of Stokes’s theorem.

First note that the boundary curve δF is composed of the subcurves:

Γ1: (x, y, z) = (a cos ϕ, a sinϕ, 0), ϕ ∈
[
0,

π

2

]
, with the unit tangent vector t = (− sin ϕ, cos ϕ, 0),

and the line element ds = a dϕ.

Γ2: (x, y, z) = (0, a cos ϕ, a sin ϕ), ϕ ∈
[
0,

π

2

]
, with the unit tangent vector t = (0,− sin ϕ, cos ϕ),

and the line element ds = a dϕ,

Γ3: (x, y, z) = (a sin ϕ, 0, a cos ϕ), ϕ ∈
[
0,

π

2

]
, with the unit tangent vector t = (cos ϕ, 0,− sin ϕ)

and the line element ds = a dϕ.
We get by insertion,∮

δF
V · t ds =

∫
Γ1

+
∫

Γ2

+
∫

Γ3

(1t + yz,−ax + zx, z2 − 2xy) · t ds.
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The integrals are computed one at a time,∫
Γ1

V · t ds =
∫ π

2

0

(
a2 sin ϕ,−a2 cos ϕ,−2a2 sin ϕ cos ϕ

) · (− sin ϕ, cos ϕ, 0) a dϕ

=
∫ π

2

0

a3
(− sin2 ϕ − cos2 ϕ

)
dϕ = −π

2
a3,

∫
Γ2

V · t ds =
∫ π

2

0

(
a2 cos ϕ+a2 sin ϕ cos ϕ, 0, a2 sin2 ϕ

) · (0,− sinϕ, cos ϕ) a dϕ

=
∫ π

2

0

a3 sin2 ϕ cos ϕdϕ = 3

[
sin3 ϕ

3

]π
2

0

=
1
3

a3,

∫
Γ3

V · t ds =
∫ π

2

0

(
0,−a2 sin ϕ+a2 sin ϕ cos ϕ, a2 cos2 ϕ

) · (cos ϕ, 0,− sin ϕ) a dϕ

=
∫ π

2

0

(−a3 cos2 ϕ sin ϕ
)

dϕ = a3

[
cos3 ϕ

3

]π
2

0

= −1
3

a3.

Summarizing,∮
δF

V · t ds = −π

2
a3 +

1
3

a3 − 1
3

a3 = −π

2
a3.
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Example 5.10 Consider the vector field

V(x, y, z) = (xz, yz + xz, 2xz − yz), (x, y, z) ∈ R
3.

1. Find the divergence � · V and the rotation �× V.

Let A denote the half ball given by

x2 + y2 + z2 ≤ c2, z ≥ 0,

where c is a positive constant, and let n be the outwards unit normal vector of the surface ∂A.

2. Find the flux

Φ =
∫

∂A

V · n dS.

3. The surface ∂A is the union of a disc F1 and a half sphere F2. Find the fluxes

Φ1 =
∫
F1

V · n dS and Φ2 =
∫
F2

V · n dS.

Let K denote a circle in the plane of equation z = b. We denote the centrum of the circle by (x0, y0, b),
and its radius is called a.

4. Choose an orientation of the circle K. Then find the circulation

C =
∮
K

V · t ds.

A Divergence, rotation, flux, circulation.

D Follow the guidelines which give the simplest variant.
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Figure 52: The half ball A for c = 1.
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I 1) By just computing we get

div V = � · V = z + z + 2x − y = 2x − y + 2z

and

rot V = �× V =

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

xz yz + xz 2xz − yz

∣∣∣∣∣∣∣∣∣∣∣
= (−z − y − x, x − 2x, z) = (−x − y − z,−x, z).

2) Then by Gauß’s theorem,

Φ =
∫

∂A

V · n dS =
∫

A

div V dΩ =
∫

A

(2x − y + 2z) dΩ

= 0 + 0 + 2
∫

A

z dΩ = 2 · π

4
c4 =

π

2
c4.

3) Now n = (0, 0,−1) on F1, where also z = 0. Hence

Φ1 =
∫
F1

(0, 0, 0) · n dS = 0.

Then apply the result of 2) and that Φ = Φ1 + Φ2, to get

Φ2 = Φ − Φ1 =
π

2
c4.

4) Choose the orientation such that the projection onto the (X,Y )-plane has a positive orientation.
Then the corresponding unit normal vector is n = (0, 0, 1).

By Stokes’s theorem, the circulation along K (which encircles the disc B) is given by

C =
∮
K

V · t ds =
∫

B

n · � × V dS =
∫

B

(0, 0, 1) · (−x − y − b,−x,−b) dS

= −b

∫
B

dS = −b · area(B) = −b · π · a2.
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